ANOVA 2 factors

Menu: QCExpert Anova-2 factors

Anova for 2 factors is an extension of the 1-factor ANOVA described above. In 2-factor ANOVA we analyze influence of two factors on a numeric response. Observed response Z_{ij} at n_X different levels of the factor X and at n_Y different levels of the factor Y may be described by Anova model for 2 factors X, Y:

$$Z_{ij} = Z_0 + \alpha_i X_i + \beta_j Y_j + \lambda_{ij} + \varepsilon_{ij}, \quad i = 1, ..., n_X, \ j = 1, ..., n_Y$$

where Z_0 is absolute term (overall mean), $\alpha \ a \ \beta$ are contributions of the individual levels, elements λ_{ij} of a matrix Λ are called interactions and ε_{ij} is the random error with normal distribution and zero mean, $\varepsilon \sim N(0,\sigma^2)$. Further we define $\Sigma \alpha_i = 0$, $\Sigma \beta_j = 0$, $\Sigma \lambda_{i(j)} = 0$, $\Sigma \lambda_{j(i)} = 0$.

Data and parameters

The module expects data in 3 columns. Two columns contain, levels of the two factors, in one column there are the corresponding observed response values. The combination of factors may be in arbitrary order. Factor levels are entered in form of any text string, such as RED, BLUE, GREEN, different string means different factor level. Both factors may have two or more levels. Each possible combination must be represented by al least one row.

The following table gives an example of data. First factor is the plant species with 3 levels: *Brazil, Longleaf, Cassablanca*, second factor is the fertilizer used, with 2 levels: *Nitrate* and *Phosphate*. The response is the observed increment in plant weight (*Yield*). There is 1 observation for each combination of levels, this experimental plan is called plan without replications. If we had the same number N > 1 of observations for each combination, we would have a balanced plan with N replications. If number of replications N_{ij} is not the same for all combinations, we have an unbalanced experimental plan. Each different combination of factor levels is called *a cell*. We can distinguish 3 types of 2-factor Anova:

Species	Fertilizer	Yield
Brazil	Phosphate	14.6
Brazil	Nitrate	17.4
Longleaf	Phosphate	13.3
Longleaf	Nitrate	12.6
Casablanca	Phosphate	17.5
Casablanca	Nitrate	14.9

1 observations in each cell – *Balanced ANOVA without replications* Equal number $n_0 > 1$ of observations in each cell – *Balanced ANOVA with* n_0 *replications* Unequal number $n_{ij} > 0$ of observations in each cell – *Unbalanced ANOVA*

In the dialog window (Fig. 1), select columns with both factors and the response. Clicking OK will run the analysis and results will be written in Protocol and Graphs windows.

Analysis of Variance - 2 factors				
Task name	Plant experiment			
Data	C Marked	C Unmarked		
First factor Species	•	Significance level 0.05		
- Second factor Fertilizer		7 Help		
r Response Yield		Back		

Fig. 1 ANOVA 2 factors – Dialog window

From the data the module automatically recognizes which of the three Anova types should be used. If there is one or more cells (or combinations of factor levels) which has no observations, the message "Empty cells are not allowed" appears.

QC.Exper	t X
⚠	Error during computation. Empty cells are not allowed!
	<u>ОК</u>

Protocol

Analysis of variance	Name of the module
Task name :	Task name from the dialog window
Type of model	Automatically recognized plan:
	- balanced without replications, or
	- balanced with replications, or
	- unbalanced
Factors	Names of the factors and their levels
levels	
No of replications	In case of balanced ANOVA: number of replications in cell n_0
	In case of unbalanced ANOVA: a table of numbers of replications in
	each cell, n_{ij}
Table of means	Table of arithmetical averages in each cell
Maana fan faatan	Total averages for each level of one factor recordings the levels of the
Means for factor	a there
	omer
Overall mean	Total average of all responses. (This would be the estimate of mean
overall mean	response if no factor had any significant influence)
	response if no factor had any significant influence.)
Model parameters	Estimates of parameters α and β , the contributions of each level.
F	r

ANOVA Table Summarized analysis of variance structure

Identification of the source (or cause) of variability
Variability caused by the first factor
Variability caused by the second factor
Variability caused by the interaction of factors
Residual variability
Total variability
Sum of squares caused (or explained) by the source
Mean square caused (or explained) by the source
Degrees of freedom of the source
Std deviation caused (or explained) by the source
Computed F-statistic value for the given source
Critical quantile of the F-distribution, If Critical quantile is less than F-
statistic, then the parameter is a statistically significant source o
variability.
Verbal conclusion of the significance test
The <i>p</i> -value for each test

Graphs

Sometimes it shows, that the variance of the response is higher for bigger values of the response. Heteroscedasticity plot shows the dependence of variance on the response value. As this Anova models assumes constant variance of the response, heteroscedasticity may affect its performance. The blue curve on the plot should not decline from horizontal line.

Plot of means

This plot shows the differences between means for individual levels of the first and second factor. Dots are the measured responses, short thick lines are the means, short black lines are the confidence intervals of the means. If the factor is statistically significant, the mean lines are red.

Influence of factor

Plot of the influence of a given factor at separate levels of the other factor. If the lines for factor *A* are similar for each level of the factor *B*, then the factor A is probably significant (illustration A). If the lines have rather opposite direction, then there is probably strong interaction between the factors (illustration B). If the lines are shaped rather randomly, then the influence and significance of the respective factor is probably low, illustration C. The plot is only qualitative visual tool an cannot fully replace the F-test.

Illustration:

Interaction plot visualizes the significance of the interaction term in the Anova model. If there is a significant slope in the plot, then the interaction between factors is significant. The statistical significance of the interaction is shown by red color of the line.