
Calibration 
Menu: QCExpert Calibration 

The Calibration module is most useful for analytical laboratories and metrological departments. 

It contains linear and nonlinear calibration models. Automatic detection of departures from linearity 

can be requested. Due to the fact that the module implements weighted regression, it can be 

successfully used for models with heteroscedastic errors. This feature can be useful namely for 

analyzing low-level measurement data (e.g. trace analysis). 

Simple calibration models work with two variables. First is the measured variable of ultimate 

interest X, (e.g. concentration, viscosity, temperature). Second is the measurement device response Y, 

e.g. absorbance, voltage, resistance, number of particles. Generally, the calibration problem consists of 

two parts: (a) calibration model construction, and  (b) application of the model constructed previously. 

When constructing the model, one uses measurement device responses: y1, y2, y3,… to known values of 

the measured variable of ultimate interest, X (usually administered in the form of certified standards): 

x1, x2, x3,… . Dependence of Y on X is expressed by a regression model, which describes the 

relationship between known xi and experimentally evaluated device responses yi in the best way. 

QC.Expert™ uses either linear or quadratic regression model for calibration. The computations are 

based on direct application of either weighted or un-weighted regression Y on X. Compared to inverse 

regression (X on Y), the direct regression is more appropriate both statistically and logically. The 

regression fit encompasses step (a). Fitted model is applied when one looks for “the best” estimate of 

the unknown value of interest, X, based on one or more device response records, Y. This estimate, 

based on inversion of the regression relationship should be always accompanied by some form of 

uncertainty assessment, e.g. in the form of (1 - confidence interval (= 0.05 is selected very often 

in practice). Width of the confidence interval for X is related to the precision with which regression 

parameters are estimated (and hence to the confidence band width in the regression step (a)). Further, 

calibration limits related to noise variability and minimum reliably measurable value are computed 

(critical value, detection limit and quantification limit). 

Data and parameters 

The calibration module expects data in the form of a two-column-table. In the regression 

terminology, one column contains X , the explanatory variable, while the second column contains 

corresponding device responses Y , the dependent variable. These two columns have to be specified 

and used subsequently when entering analysis requests. If one wants to use the calibration model fitted 

on these two columns in order to estimate X for some additional unknown samples, their recorded 

responses Y have to be entered in additional columns. Recorded responses Y of individual unknown 

samples are entered as individual rows of one column. If there is more than one recorded response per 

one sample, additional replications should be listed as additional cells on the same row. The following 

table serves as an example of the situation where we had 5 calibration standards with values X=1.281, 

2.558, 5.430, 7.373 and 11.59. The first four standards were measured repeatedly (twice each). After 

the regression model was fitted, we used the resulting calibration to analyze 4 samples from Czech 

rivers Upa and Labe denoted as Upa A, Upa B, Labe AE, Labe AR. The first two of these samples were 

analyzed repeatedly (three times each, replication denoted by  Replic1 to Replic3), next two samples 

were analyzed only once. The column denoted by Sample is intended only to hold comments only; it 

cannot be selected for further operations in the dialog panel. If calibration relationship estimation is all 

what is needed, entered data table will consist of the first two columns only. Additional data are not 

required then.  

Table 1 Calibration data example  

X Y Sample Replic 1 Replic 2 Replic 3 

1.281 25.53 Úpa A 33.69 33.74 33.73 

1.281 25.58 Úpa B 39.25 39.25 39.27 

2.558 51.37 Labe AE 50.6   



2.558 51.23 Labe AR 57.3   

5.430 106.4     

5.430 108.7     

7.373 148.4     

7.373 146.6     

11.59 233     

 

Dialog panel selections for the example just described is in the Fig. 1. 

 

Task name is a text string, originally taken from the name of the data containing spreadsheet. It 

can be edited. The finally selected Task name will appear as a header in the resulting protocol. The 

Calibration dependence part specifies calibration model type. Here, the user must specify explanatory 

variable (X, values of the certified standards) and the dependent variable (Y , the measurement 

response recordings). In addition, a calibration model type has to be specified as either linear 

(calibration relationship is linear) or quadratic. Quadratic model is the simplest model allowing for 

curvature (nonlinearity) in the calibration relationship. When the auto choice in the Calibration model 

selection is invoked, automatic linearity check will be performed. This is done as follows: quadratic 

model is fitted first. A statistical test is used to test whether the quadratic term is significantly different 

form zero. If it is statistically significant, quadratic model is used. If it is not significant, all subsequent 

calculations are based on linear model. We strongly recommend using the auto choice, if the user is 

not sure about calibration model type. Heteroscedastic errors  selection should be checked when one 

suspects that error variability of the Y reading depends on X. Heteroscedastic errors are quite common 

for instance when the calibration model is fitted across more than one order of magnitude (e.g. in trace 

analysis). When a heteroscedastic model is invoked, the calibration model is fitted by iteratively 

weighted regression procedure  (IRWLS). The weights are then given as reciprocal values of the 

predicted residual variance, computed via nonparametric regression. The predicted variability can be 

inspected visually in the absolute residuals plot. Heteroscedastic model tends to give narrower 

confidence band in the intervals where the measuring device readings are more precise. If this 

increased precision occurs for X close to zero, heteroscedastic model based detection limits tends to be 

smaller.  

 

 

Fig. 1 Calibration module dialog panel 

One should mark the Plot the inverse estimates selection, if inverse estimates are requested in 

the calibration plot. You should not use this choice if there are many calibration points and/or when 

confidence band of the calibration model tends to be wide, since then the resulting plot is hard to read.  

Text appearing in the X units and Y units fields is self-explanatory, denoting measurement units of 

these variables. It does not influence any calculations. It appears only in the final report of results. If 

they are not needed, the two fields can be left blank.  



In the Measurement device reading part, the item New samples reading should be selected if 

one wants to estimate unknown X from additionally recorded Y. After selecting this item, roll-down 

menu can be opened, offering names of all columns that can hold the new device response readings. 

Indirect (sometimes imprecisely denoted as nonlinear) estimates are specially constructed estimates of 

unknown X, derived for the situation of the so-called statistical calibration, when both X and Y are 

considered to be random variables and the data are viewed as a two-dimensional cloud. The Indirect 

estimates selection invokes their calculation. This method can be used both in linear and nonlinear 

situation. In any case, the results are rather imprecise and confidence intervals for the X are not 

computed. These estimates should not be used when the calibration relationship is strong.  When you 

mark the Calibration limits selection, resulting protocol will contain the critical value, detection limit 

and limit of quantification. Taken together, these values are referred to as calibration limits. 

QC.Expert™ offers five methods to calculate these limits, based on various literature sources. When 

the Method… button is pressed, a menu appears (Fig. 2), where one can select which of the methods 

should be computed. At least one method has to be selected.  

 

 

Fig. 2 Calibration limit calculation method 

In the K field, the K coefficient can be entered, which will be subsequently used for the trivial 

calibration limits calculation method: K*Sigma. Typically, K=3 is selected often in practice. Since this 

coefficient has the meaning of the normal distribution quantile, its value should correspond to a chosen 

significance level  in order to keep the results comparable with the other methods.  The „?“ button 

can be used to compute the value of K which corresponds to a selected significance level (e.g. for 

 = 0.05, we have K = 1.96). On the other hand, if we insist on using K = 3, we should change 

significance level to  = 0.0027 in order to be consistent across various methods of calculation and to 

get comparable results. When the standard deviation of the blank blank is known (that is the standard 

deviation of the measurement device signal obtained without adding any sample, i.e. when X=0), the 

Sigma B selection is marked and blank  value entered. In the Data part, one can (as in other modules of 

the software) choose whether all data, or marked row data, or unmarked data will be used for 

computations. Data rows can be marked, using the button in the upper bar. Significance level must be a 

value smaller than 0.5 and larger than 0. It is used for all tests, and for calculation of (1-)% 

confidence limits and calibration limits.  

Further, we describe briefly various methods of calibration limits calculation and list their 

definitions. Since this is an analytical chemistry material, we use a common chemical terminology.  

 

YC … critical level of Y. The smallest value of Y  that can be reliably distinguished from noise. (a Y 

value, which is exceeded by noise with probability smaller than . Values smaller than YC are 

considered to consist of noise only, respectively to be the blank readings. 

 

YD … detection limit of Y. Analyzed substance can be safely proved (with probability 1) when it 

gives measuring device reading above this value. Probability of obtaining the reading  y > YD under the 

blank measurement condition is smaller than 1. 

 



YQ … quantification limit of Y. The value, above which true Y value can be estimated with the relative 

error, smaller than . Quantitative analysis should not be conducted for samples giving measurement 

device readings under this limit.  

 

XC … critical value of  X. It is tied to YC  through the calibration model. 

 

XD … detection limit of  X. Minimum value of X (e.g. concentration, weight) detectable by the given 

method. 

 

XQ … limit of quantification for X. Minimum value of X, which can be estimated with the relative error 

smaller than . Only the X values above XQ should be estimated quantitatively. 

Y
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Fig. 3 Schematic draws of YC, YD and YQ 

 

For K*Sigma method, see Figures Fig. 3 and Fig. 4. 

YC = K., YD = 2K., YQ = 3K. 

Sometimes, the YQ = 10/3K. is used. For K=3, it corresponds to the 10 units. We suggest to 

choose K as the (1) – quantile of the standard normal distribution in order to keep the results 

comparable to the results of other methods.  This method does not provide critical values of X. One can 

obtain them informally from the calibration plot, however.  Estimate of  is obtained either as the 

blank’s standard deviation, or as the square root of residual variance from calibration model fitting.   
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Fig. 4 Method K*Sigma 

The following three methods use fully statistical properties of the calibration model and hence, 

they can be used to compute also critical values of X correctly. They are typically smaller (and hence 

more desirable) than those obtained from the K*Sigma method. The direct analyte method (Fig. 5) 

uses confidence intervals of  X estimates. 
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Fig. 5 Direct analyte method 

The direct signal method uses confidence intervals for Y, Fig. 6. 
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Fig. 6 Direct signal method 

The Ebel and Kamm combined method combines elements of the two previous methods, Fig. 7. 
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Fig. 7 Combined method, Ebel and Kamm 

The last method implemented,  K*Sigma from regression is similar to the first one  (K*Sigma) only 

with the distinction, that for Khalf-width of the confidence interval for situation with x=0 is used. 

That is the half-width of the regression confidence band at x=0, for a given significance level.  
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Fig. 8 Method K*sigma from regression 

Inverse estimates. The main practical purpose of the calibration procedure is to be able to estimate 

unknown X from the recorded measurement device output Y. The required estimate is obtained by 

calibration relationship inversion (given by the previously estimated calibration model). One important 

thing to be kept in mind is the fact that, since the X  is obtained from the random variable Y, it is 

random variable as well. Hence, it is not enough to report the point estimate itself, some measure of 

uncertainty should be attached. One possibility is to use the confidence interval (say the 95% 

confidence interval). Fig. 9 shows an example of the X estimate construction by the inversion of the 

calibration relationship. If we have some information about variability of the Yi reading for the 

particular sample (obtained for instance from the repeated readings Yij, j=1,…ni, then we are able to get 

a more realistic (even though sometimes wider) confidence interval for Yi, and hence a more realistic 

estimate confidence interval for Xi. When the interval is constructed in this, more elaborate way, it 

reflects both variability related to the uncertainty of calibration relationship estimation and the current 

Y measurement variability, which is connected to a particular sample, see Fig. 10. This is one of the 

reasons why it is so important to replicate calibration measurements if it is possible. Whenever 

possible, the measurement outcome should be given in the form of interval (x0.025, x0.975), possibly 

listing the point estimate xi as well. Remark: Confidence interval for the X estimate (obtained by the 

inversion of the calibration relationship) is not symmetric around xi in general. 
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Fig. 9 Estimation by inversion for one measuring device reading 
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Fig. 10 Estimation by inversion for repeated measuring device reading 

 

New method validation. The Calibration module can be successfully used to validate a new method 

through comparison with another method, established and validated previously. For this purpose, the 

established (or validated, or certified) method’s results are entered as X, while the new method’s 

results are entered as Y (entered so that X and Y values corresponding to the same sample appear on the 

same line). The samples, on which the X and Y pairs are measured, should cover densely whole range 

in which the new method is to be validated. When computation request is specified in the Dialog 

panel, automatic calibration model type selection (or “auto”) should be marked. The new method is  

validated, if the linear model is selected; its intercept is not significantly different from zero, while it’s 

slope is not significantly different from one. Appropriate slope and intercept test results can be found 

in the  Intercept significance and Slope validation paragraphs of the Protocol. Alternatively, one can 

use the module Two-sample comparison  – Paired comparison, see the respective paragraph. 

Protocol 

Task name Name of the project, taken from the Dialog panel 

Sample size n, number of valid X,Y pairs used for calibration model estimation.  

Significance level Significance level .required and entered by the user. 

Calibration model 

selection 

The requested way of calibration model selection (manual or automatic). 

Calibration model 

type 

Calibration model type used (linear or quadratic). Number of degrees of 

freedom  for a given calibration model is equal to the sample size minus 

number of estimated parameters. For linear model,  = n  2, for the quadratic 

model  = n  3. 

 

Is the model used 

feasible? 

Linearity test. If we use (in the manual mode) linear model for data showing a 

substantial nonlinearity; or on the contrary, if we use quadratic model for linear 

data, we make a mistake that manifests by the measurement error increase, at 

least. If such a problem is detected by the statistical test implemented in the 

software, Protocol contains the word  "not feasible"; otherwise it contains the 

word "feasible". 

Weighted regression 

used? 

Indicates, whether the weighted regression was used (Yes or No), that is 

whether a heteroscedastic errors model was invoked effectively.  

 

 

 

Calibration model 

parameters 

Information about calibration model parameters. If the model is linear, intercept 

"Abs" and slope (linear trend coefficient) will be reported. If the model is 

quadratic, the quadratic term coefficient is reported as well. Linear term does 

not have the first derivative meaning in that case. 

Parameter Parameter name: "Abs" = intercept, X=linear term coefficient, X^2=quadratic 

term coefficient 



Estimate Parameter estimate. 

Std. deviation Standard deviation of the parameter estimate (its standard error). 

Lower limit Lower limit of the 1- confidence interval. 

Upper limit Upper limit of the 1- confidence interval. 

Intercept significance Test of the null hypothesis that intercept is equal to zero. Result of this test is 

interesting when validating a new method via comparison with an established 

method, among other situations. 

Value Intercept value, copied from the Calibration model parameters paragraph 

Conclusion Conclusion of the significance test. If the intercept is not significant, than we 

have no particular reason to believe that the calibration curve (or line) does not 

go through the coordinate origin (more precisely: we cannot reject the zero 

intercept hypothesis at the significance level ). Even if not significant, the 

intercept should remain in the model (the Calibration module, unlike the 

Linear regression module does not allow models without intercepts anyway). 

This is on purpose, since models without intercepts can lead to unwanted 

confidence interval distortion at x=0 and to the situation, where it is impossible 

to compute calibration limits. When the intercept test is significant, it is 

possible to reject the null hypothesis about its’ population value being zero, 

accepting the alternative that the calibration curve/line does not go through 

origin, i.e. that Y(X=0)  0. 

Slope validation This test is very useful when validating a new method (respectively, when 

comparing two methods).  

Value Linear term coefficient value (when the model is linear, this is the derivative of 

the calibration relationship). It is copied from the Calibration model 

parameters paragraph. 

Linear term 

coefficient=1 

Conclusion of the unit slope hypothesis test (Yes or No). If the model is linear, 

the tested coefficients have meaning of the calibration relationship derivative.  

  

Method sensitivity Sensitivity of a particular method is defined as the measuring device response 

(Y) change, when X  is changed by one unit. When model is linear, the 

sensitivity is equal to the slope. When model is nonlinear (quadratic), the 

sensitivity is given by the derivative of the calibration relationship and changes 

with the X value. Therefore, the software gives the sensitivity at four important 

points: at x = 0, at the lowest data value min(x), in the middle of measured data 

range – i.e. at (min(x)  max(x))/2, and at the highest data value max(x). 

Selected K Selected K for use in the K*sigma method. 

Blank signal standard 

deviation 

The value entered as Sigma B in the Dialog panel (if that was entered). That is  

the user-inputted value of  blank. 

Computed blank 

signal standard 

deviation 

If the blank signal’s standard deviation is not entered in the Dialog panel, 

residual standard deviation is used instead. This value is used for calibration 

limits calculation by the K*Sigma method. Residual standard deviation is 

usually higher than  blank, the K*sigma does not give reliable results then. 

  

Calibration limits Critical value, detection limit and limit of quantification for Y and X.  They are 

computed by the following methods: K*Sigma, direct analyte method, direct 

signal method, combined Ebel-Kamm method and K*Sigma from regression 

method. 

Yc, Yd, Yq, Xc, Xd, 

Xq, Yq(10sigma), 

Xq(10sigma) 

Yc = Critical value for Y, Yd = detection limit for Y, Yq = limit of 

quantification for Y. Xc = Critical value for X, Xd = detection limit for X, Xq = 

limit of quantification for X. Yq(10sigma) and Xq(10sigma) are alternatives to 

the quantification limit. For  K=3, they correspond to 10, while Xq and Yq 

correspond to 9for K=3. 



  

Calibration table This paragraph collects the results, whose computation gives main motivation 

to the calibration procedure. X estimates for a new, unknown sample are 

obtained by the estimated calibration relationship inversion from the measuring 

device response reading Y . If the data spreadsheet does not contain any Y 

readings, or when New samples reading was not selected, this paragraph does 

not appear in the Protocol.  

Sample number Integer indicating the sample number. 

Estimate of X Estimate of X by inversion. 

Lower limit Lower limit of the 100(1)% confidence interval of X, computed by 

inversion.   

Upper limit Upper limit of the 100(1)% confidence interval of X, computed by inversion.   

Indirect estimate Indirect estimate from the so-called statistical calibration. This estimate is 

computed only when the  Indirect estimate was selected and when the 

variability of  Y is large enough. Otherwise, column of zeros is printed here. 

New samples 

readings 

New samples readings of the measuring device, if they were entered. The NA 

acronym (not available) denotes missing data.  

  

Residual analysis Analysis of the residuals after the model. 

Residual sum of 

squares 

Residual sum of squares. 

Mean absolute 

residual 

Average of absolute values of residuals. 

Correlation 

coefficient 

Correlation coefficient estimate. Remark: Correlation coefficient cannot be 

used to judge whether linear or quadratic model is appropriate for given data! 

Measurement number Integer denoting numbering the X,Y pairs. 

Measured X Value of the known standard, taken from the inputted data. 

Measured Y Value of the measurement device reading, taken from the inputted data. 

Computed Y Value of Y ,  computed for a given X from the calibration model.  

Residual Difference: (Measured Y  Computed Y) 

Weight Weight attached to a particular measurement. If the Heteroscedastic errors 

choice was not selected, this column contains ones only.   

 

Graphs 

 
 

Calibration plot, showing estimated calibration relationship, 

together with the confidence band (solid red line). If there are 

measuring device readings Y for an unknown sample, and the 

Plot inverse estimates selection is marked, corresponding X 

estimates are plotted as well. Horizontal dashed lines 

correspond to Y values (in case of  repeated readings, they 

correspond to average and the related confidence interval. 

Vertical lines correspond to X estimates and appropriate 

confidence intervals, obtained by inversion of the calibration 

relationship.   

 

Upon double clicking on the plot, a new dynamic window is 

opened. In this window, further plot operations can be 

performed, see below.   



 

 

Residual plot. Plot of residuals ei, fitted by a nonparametric, 

kernel estimate K(ei) (black line). Substantial curvature can 

serve as a warning that the calibration relationship is nonlinear 

and is not described by the selected model satisfactorily. 

Observed curvature often relates to the presence of an outlier.  

 

Absolute residual, |ei| plot. Nonparametric, kernel regression 

estimate is superimposed (two dashed curves). The two curves 

depict estimates of standard deviation as a function of  X, i.e.  

(x). The upper (blue) curve is given by the square root of the 

residual squares fit,  K(ei
2
). The lower (black) curve is given 

by the kernel fit of the absolute residuals, K(|ei|). The upper 

curve tends to be a better estimate of  (x) (when the residuals 

behave normally). This is because  21
i

n
, a quantity 

which is estimated rather directly in this case. The lower curve 

is more robust. 

 

Interactive calibration plot 

Double clicking on calibration plot invokes a new window with an interactive plot. This 

window can be used for inspection or even reading the X estimates, while keeping all other interactive 

plot features. While the mouse is moving above the calibration curve, Y coordinate is shown together 

with the corresponding X estimate and confidence interval obtained by inversion, as seen on the Fig. 9. 

When the mouse is moving below the calibration curve,  x coordinate is shown, together with the 

corresponding Y estimate, together with the confidence interval. When a particular detail is magnified 

(by zooming-in), plotted values can be read with a substantial precision. Nevertheless, when interested 

in Y estimates for a given X, or X estimates for a given Y, the “calibration calculator” should be used. 

The calculator can be invoked by clicking on the  Interactive estimates,  button. 

The Interactive estimates window has 8 fields. X and Y cursor coordinates, relative to the interactive 

plot, appear on the uppermost line, originally. These values can be edited, however. Beneath the X 

field, there is the corresponding Y estimate, accompanied by its confidence interval. On the other hand, 

beneath the Y field, there is the corresponding X estimate, accompanied by the appropriate confidence 

interval. By clicking on the X or Y field, X or Y value can be entered from keyboard. After pressing 

<Enter>,  appropriate estimates are computed. For instance, if we want to compute X estimate for the 

measurement device reading Y = 25.7, we click on the Y field in the Interactive estimates window. 

Next, we erase the content of the Y field and enter the value 25.7. The request is submitted by pressing 

<Enter>. Subsequently, X estimate, lower (X) and upper (X+) limits or the 100(1)%  confidence 

interval obtained by the inversion of the previously estimated calibration relationship appear beneath 

the Y field subsequently. 

 



 

Fig. 11 Interactive estimates window with the calibration plot 

 

 

Fig. 12 Interactive estimates 

 


