
Linear regression 

Menu: QCExpert Linear regression 

Linear regression module is used to build and analyze linear regression models in their general 

form 

 

G(y) = a1F1(x) + a2F2(x) + . . . + amFm(x) + a0, ( 1-1) 

 

where y is a response variable, x = (x1, x2, . . . xp) are values of explanatory variables (written as a 

vector). p is the number of explanatory variables in the regression model. There are m parameters, 

a = (a1, a2, . . ., am) in the model. a0 is the intercept. Fi(.), i=1,…m are arbitrary functions of 

explanatory variables which do not involve parameters. G(.) is an arbitrary function of the response 

variable which does not involve parameters. Individual summands Fi(x) on the right hand side of the 

model equation are sometimes called model terms. Ideally, x is assumed to be a deterministic, i.e. non-

random vector, being either purportedly set to pre-specified values or its values are found out via an 

essentially error-free procedure. y depends on  x, but the dependence is blurred by the presence of a 

random error . Vector of model parameters a can be estimated from data by various methods. Some 

methods are robust, some of them might not be. The (data, model, method) triplet is sometimes called 

the regression triplet. In order to get correct results, each of the triplet components should be given 

appropriate attention. Regression diagnostics and other tools offered by QC.Expert™  are useful in this 

context. There is also a wide choice of models available in the program. The user can select one of the 

three basic model types: simple linear model without transformation,  polynomial model or general 

user-defined model. The selection takes place in the Linear regression dialog panel, particularly in the 

Transformation field:  

 

No transformation: corresponds to a regression model of the form  

 

y = a1x1 + a2x2 + . . . + amxm + a0, ( 1-2) 

 

For this model, the number of parameters, m is specified by the number of explanatory 

variables selected in the Explanatory variable window. The simplest example of such a model is a 

regression line, e.g. 

[profit] = a1 . [investment] + a0, 

another example, involving several explanatory variables is 

 [steel_strength] = a1 . [Cr_concentration] + a2 . [melting_time]  + a3 . [carbon_concentration]  + a0, 

 

For instance: 

 

Fig. 1 Regression line 

 

Polynomial is a model of the following form:  
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y = a1 x + a2 x
2
 + . . . + am x

m
 + a0, (1-3) 

 

m is degree of the polynomial. It is equal to the number of model parameters minus one. There is only 

one independent variable x in such a polynomial. All of its powers 1 through m appear in the model, 

however. Following quadratic (i.e. nonlinear) relationship can serve as an example. 

 

[number_of_items_sold] = a0 + a1 . [advertisement_costs] + a2 . [advertisement_costs]
 2
 + a0. 

 

When a model involving only some powers is desired instead of the full polynomial (e.g. a 

model with the first and third powers only),  user transformation has to be used. 

 

For instance: 

 

Fig. 2 Polynomial of the 3
rd

 order 

QC.Expert™ also allows polynomial transformation of several explanatory variables. In more than one 

independent variables are selected, polynomial transformation will allow for the full 2
nd

 degree Taylor 

series, which is often used to fit and optimize response surfaces. Results n the protocol then include 

type of the stationary point (possibly optimum) and parameters of the regression model. Details are 

described below in paragraph 0. 

 

User transformation: allows you to specify a linear model. It is a general formulation which includes 

the two special cases discussed previously (without transformation and polynomial). Earlier defined 

models can be selected using the appropriate selection window. A new model is specified upon 

choosing Model… after clicking the User… button. This action opens model specification dialog panel, 

see later). Individual transformation functions F1, F2, …, and/or G, see below can be specified there. 

User transformation can be used when linearizing the exponential model y = A . exp(B x) to the the 

form ln (y) = a + b x, where a = ln A, b = B. G = ln(y), F1= x,  in this case,  . Another example is 

 

1 / [consumption] = a1 [X1] + a2.[X1]
1/2

 + a3 [X1].[X2]  + a4 ln[X2] + a0, 

 

where 

G = 1/[consumption], 

F1 = [X1], 

F2 = sqrt[X2], 

F3 = [X1][X2], 

F4 = ln [X2], 

[consumption] is the response variable, [X1] and [X2] are explanatory variables.  
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It is important to keep in mind that the transformations can involve only explanatory/response 

variables, they must not involve parameters ai. Models like y = a1 . x
a2

 + a0, or y = a0 + a1 . exp(a2 x) 

cannot be specified through such transformations. 

One of various (robust or classical) estimation method can be selected. This should be done in 

accord with the general character of  the data, error behavior, or  other considerations. Individual data 

points can be weighted differently upon inputting user-supplied weights. QC.Expert™ allows you to 

inspect various potential models corresponding to all combinations of model terms by fitting all 

possible regression subsets. This can help you to find the most important variables, which should be 

included in the model, and/or their transformations.  

Data and parameters 

Unknown parameters a = (a1, a2, . . ., am) are estimated from data in the current data sheet. 

Each of its columns corresponds to a variable. Column header contains a variable name. The way, in 

which variables are selected depends on a requested transformation.  

 

 

Fig. 3 Linear regression dialog panel 

 

No transformation: when the linear regression dialog panel is open for the first time, the last column 

is automatically selected as the response variable column, any other data columns are selected as 

explanatory variables implicitly. Other choices can be made using mouse, Shift and Ctrl keys. Number 

of explanatory variables is not restricted at all. Exactly one response variable has to be selected. Any  

model specified in this way has a general form (2). The dependent variable column corresponds to y 

and  the explanatory variables data columns correspond to x1, x2, … 

 

Polynomial: requested polynomial transformation (3) amounts to fitting a polynomial curve through 

data. Such a choice involves only one response and one explanatory variable. Requested polynomial 

order p has to be specified. Lower order polynomials are strongly preferred in general. Higher order 

polynomial models can be numerically unstable. Their statistical properties might be bad as well, 

resulting into high variability of parameter estimates and poor prediction abilities. Choice of the 

polynomial degree might be guided by the APSR (all possible subsets regression) results - see later. 

When Polynomial transformation is selected, all powers 1 through p  are forced into the model. When 

only some of the powers are to be included in the model (e.g. 1
st
 , 3

rd
, 5

th
), User transformation has to 

be selected, where each of the model terms is specified explicitly.  

 If more than one explanatory variable is selected, then the Polynomial order field stays inactive 

and a full quadratic model is constructed automatically. The model includes all pure terms terms of up 

to second order and all cross products of linear terms, so that  its terms involve  



 

x1, x2, ..., xm, x1x2, x1x3, ... xixj, ..., xmxm-1, x1
2
, x2

2
, ..., xm

2
 (1-4) 

 

When our variables are named A, B, C, the full quadratic model with intercept will be of the form  

 

y = a0+a1.A+a2.B+ a3.C+ a4.AB+ a5.AC+ a6.BC+ a7.A
2
+ a8.B

2
+ a9.C

2
 

 

This model corresponds to an m dimensional quadratic surface. Such a surface can have one extreme 

point (minimum or maximum), corresponding to the minimum or maximum expected response. The 

model can be fitted in the Response surface module as well, although the output is much less detailed 

there (e.g. without diagnostics). One has to keep in mind that the number of data points should be 

larger (ideally much larger) than the number of model terms. With m different explanatory variables, 

the full quadratic model has 1.5m+m
2
/2+1 model terms. For instance, m=10 gives 66. Detailed 

description of the quadratic model output can be found in the Response surface methodology chapter. 

 

User transformation: after selecting User transformation, the model specification panel is opened 

upon clicking the Model… button. If any models were specified previously, one of them can be 

selected without going through the Model specification panel. In such case, it is necessary to make sure 

that variable names in the model and in current data sheet agree.  A new model is formulated using the 

Model specification panel. The current data sheet variables list is displayed in the left part of the Model 

specification panel. Only the listed variables can be used when specifying a regression model. Model 

input line appears in the upper right hand corner of the panel. The window located just below the input 

line lists dependent variable together with model terms included already. 

 

 

Fig. 4 Model specification dialog panel 

 

Any function of one or more explanatory variables can be a model term. There has to be only one 

response variable.  It is either directly the variable selected by the user from the current data sheet 

variables or any function of it. The response variable is denoted as Y=. For instance, let us define the 

model ln(y)  A.x + B.x

 + C.x


 model. The intercept can be included in the model either by checking 

the  Intercept, or by including 1 (number one) as an explanatory variable during the model 

specification. Only one of the two possibilities should be used. (When both of them are used, an error 

caused by model over specification results.) 

 

Model specification instructions: 

Double click on a variable name in the available variables list copies the name to the model input line. 

Variable name is always enclosed in square brackets. Function buttons can be useful when specifying 

more complicated models. Highlight a part of the model input line and clicking a function button 

subsequently to apply the function on the highlighted part as an argument. For instance,  expression 



ln([x]+1) can be assembled in the following way: double click on the variable x (there has to be a 

column of this name in the current data sheet): [x];  write  + 1 manually;  highlight whole expression: 

[x]+1; click the Ln button, resulting into: ln([x]+1). Application of  ^2, ^A, Sqrt, Exp, Log, 1/X, 

( ) is similar. The C button erases model input line. Other functions have to be inputted manually 

(writing their name in the model input line). Available functions are listed in the table below. After 

specifying a term completely, another term is added by clicking on the Next explanatory button. The 

response variable is included by clicking on the Response button. A highlighted model term is erased 

when clicking the Erase button. There has to be exactly one response variable in any model. When 

finished with specification, the model is saved by the Save button. Then, it automatically appears in the 

list of previously specified models located in the bottom part of the panel. The Read button reads in a 

model from the set of previously defined models. Its terms can be edited subsequently. The Erase 

model deletes a selected model from the model list. Warning: the operation is irreversible! OK button 

finishes model specification.  

 You can select previously specified models from the list directly in the  Linear regression  

dialog panel without opening the Model specification panel, be careful however: variable names in the 

model and in the current data sheet have to agree. 

Table 1 List of available functions 

 

Function Value, description, restrictions Syntax 

 

Basic binary operators 

 Summation x+y 

 Subtraction xy 

 Multiplication x*y 

 Division; y  0 x/y 

^ Power; for a negative x, the INTPOWER function has to be 

used 

x^y 

DIV Integer divisor; y  0 x DIV y 

MOD Modulo; y  0 x MOD y 

   

Functions 

TAN Tan; x  n+/2 tan(x) 

SIN Sine sin(x) 

COS Cosine cos(x) 

SINH Hyperbolic sine sinh(x) 

COSH Hyperbolic cosine cosh(x) 

ARCTAN Arc tan arctan(x) 

COTAN Cotan; x  n cotan(x) 

EXP Exponential function, base e exp(x) 

LN Natural logarithm; x  0 ln(x) 

LOG Decadic logarithm; x  0 log(x) 

LOG2 Base 2 logarithm; x  0 log2(x) 

SQR Square Sqr(x) 

SQRT Square root; x  0 Sqrt(x) 

ABS Absolute value (abs(0) = 0) Abs(x) 

TRUNC Truncation Trunc(x) 

INT Truncation int(x) 

CEIL Ceiling Ceil(x) 

FLOOR Floor  Floor(x) 

HEAV Heaviside function (indicator of a nonnegative argument,  0 Heav(x) 



for a negative argument, 1 else) 

SIGN Sign (-1 for a negative argument, 0 for 0, 1 for a positive 

argument) 

Sign(x) 

ZERO Indicator of zero (1 for zero argument,  0 else) Zero(x) 

RND Random number from a uniform distribution on (0,x); x  0 Rnd(100) 

RANDOM Random number from (0,1) uniform distribution. Even though 

it does not use any argument, a dummy argument has to be 

specified.  

Random(0) 

 (Unary) minus before an expression x 

   

Functions with two arguments 

MAX Maximum MAX(x,y) 

MIN Minimum MIN(x,0) 

INTPOWER The first argument raised to the power specified by the second 

argument, the second argument is integer valued; it can be 

used even for a negative x 

INTPOWER(x, 2) 

LOGN Logarithm of the first argument, using the second argument as 

base; x  0, y  1 

Logn(x,3) 

   

Relations 

GT Greater than; if x>y then it returns 1, 0 else GT(x,y) 

LT Less than; if x<y then it returns 1, 0 else LT(x,y) 

EQ Equal;  if x  y then it returns 1, 0 else EQ(x,y) 

NE Not equal; if x  y then it returns 1, 0 else NE(x,y) 

GE Greater or equal; if x  y 1, 0 else GE(x,y) 

LE Less or equal; if x  y 1, 0 else LE(x,y) 

 

 Function names can be written in lowercase or uppercase letters. Relations result in 0 or 1, 

which can be used when specifying discontinuous functions, like le(x,0)*1+gt(x,0)*5, see also the 

Nonlinear regression chapter.  

 

Further details on the Linear regression dialog panel. 

 

Task name: A project identification (one line). It appears in the protocol and graphic output headers.  

 

Independent variable: Select one or more explanatory variables. Use mouse (dragging, Shift-click or 

Ctrl-click) when selecting more than one variable. This item is not active when User transformation is 

selected – the variables are specified in the Model specification panel. 

 

Dependent variable: Select one data column as a response variable. This item is not active when User 

transformation is selected – the variables are specified in the Model specification panel.  

 

Intercept: When checking this option, intercept is included in the model. Do not use it when the 

intercept is already entered manually as the unit explanatory variable!  

 

Alpha (0  1): Significance level,  which will be used for all tests and confidence intervals. It has to 

be larger than 0 and smaller than 1. 0.05 is the default. 

 

p (p  1): Coefficient p for Lp regression. The value is used only when the Lp-regression is selected 

(see later). p=1 corresponds to the least absolute differences method, p=2 corresponds to the least 



squares, p    (p10 is typically taken in practice) corresponds to minimization of maximum error 

(minimax). When 1p2 is selected,  the  resulting estimates are rather robust against outliers. p1.5 is 

the default. 

 

Quantile (0  1): Probability value specifying a particular quantile regression. It is used only when the 

Quantile regression is selected (see later). It has to be larger than 0 and smaller than 1. 0.5 is the 

default, corresponding to the least absolute differences method. 

 

Rank limit (0  1): It is a restriction parameter related to the Rank correction method.  Zero parameter 

value corresponds to the usual method of least squares (OLS). When a positive parameter is selected, 

the components related to small eigenvalues of the X
T
X matrix are suppressed, resulting into biased 

parameter estimates with smaller variance than usual estimates. Such estimates are less sensitive to an 

ill conditioned X
T
X matrix, which occurs typically e.g. when fitting a high degree polynomial models 

(see later). Value of at most 0.1 is recommended. 

 

Quasi-linearization: When this selection is checked, quazilinearization is applied. It is useful when 

User transformation is selected and the response variable is nonlinearly related to one of the 

explanatory variables. This occurs  for instance for the model  ln(y) ~ [x]; [x]^2. Nonlinear 

transformation G(y) linearizes the model, but it deforms error distribution and biases parameter 

estimates. The quasilinearization technique can eliminate the bias, to some extent. The 

quasilinearization is based on the idea of introducing  weights wi[G(y)/y]


. 

 

Weights: Select a data column wi, you want to serve as a weighting variable. Alternatively, you van 

select one of the pre-specified weight types: [None], [Y], or [1/Y]. The [1/Y] weights are used when 

the relative error for the response is constant. The weights must not be negative. Zero weight results in 

dropping the corresponding line from the analysis. The default is [None] – all weights are equal to one. 

When variances of the response in different data rows are known, say S = diag(w1
-2

, w2
-2

, . . ., wn
-2

) 

than the weights should be proportional to the square roots of reciprocal variances. 

 

Method: Select one of computational methods. The selection should depend on the nature of the 

analyzed data.  

 

Least squares: The basic and commonly used method. It works fine when errors are normally 

distributed, data are free from gross errors in both response and explanatory variables and the problem 

is not ill conditioned due to an unfavorable design matrix composition. The method may fail badly 

when some of these conditions are not satisfied. 

 

Rational rank: A method commonly used for instance for higher order polynomials, full second order 

polynomials and other cases when collinearity is a problem (explanatory variables are “correlated”). 

Detected collinearity is indicated in the QC.Expert™ protocol (in the Multicollinearity paragraph). 

The extent to which the rank is corrected is given by the Restriction parameter (value of at most 0.1 is 

recommended). When a positive parameter is selected, the components related to small eigenvalues of 

the X
T
X matrix are suppressed, resulting into biased parameter estimates with smaller variance than 

usual estimates. Such estimates are less sensitive to an ill-conditioned X
T
X matrix. 

 

Quantile regression: Quantile regression method, using the quantile specified in the Quantile field. 

It corresponds to the model in which probability of  the event (linear predictor<Y) is The method is 

advantageous when we are not interested in modeling changes in expected value as a function of 

explanatory variables, but rather in modeling changes of a more extreme tendency of the distribution, 

specified by a quantile. For instance, one might be interested in “minimal” strength and choose 

=0.05, or in “maximal” pollution  and choose =0.95, etc. The computation method is iterative 

(weighted least squares method is used iteratively). Computation time depends on the number of data 



points. Number of data points (n) should be larger for more extreme quantiles (i.e. for close to 0 or 

1). n should be larger than 5/min(,1). =0.5 gives median regression, corresponding to the Lp 

regression for p=1, i.e. to the method of the least absolute differences. Generally, the returned solution 

is less precise for small or large In some cases, the solution might not be unique.  

 

Lp-regression: This method is based on minimization of the sum  |ei|
p
 , amounting to a generalization 

of the least squares method based on ei
2
 minimization. Parameter p is entered in the p field (p  1). 

p=1 gives median regression, i.e. the method of the least absolute differences. It is very useful for  data 

whose distribution is similar to the Laplace distribution. p=2 corresponds to the least squares 

regression, p    (p10 is typically selected in practice) corresponds to minimization of maximum 

error (minimax). It is very sensitive to outliers and it should be used only when the errors are 

uniformly distributed. When 1p2 is selected,  the  resulting estimates are rather robust against 

outliers. p1.5 is the default. Solution to the Lp regression might not be unique. Iterative randomized 

simplex optimization method is used for computations.   

 

Least median: A modern, highly robust regression (often called LMS) method based on minimization 

of the median of squared differences. Iterative randomized simplex optimization method is used for 

computations. 

 

IRWLS exp(-e): A robust regression method producing M-type estimates. It is based on iterative 

minimization of sum of squared standardized residuals w(eni), using weights w(e)  exp(e). Iteratively 

Re-Weighted Least Squares are used for computations. 

 

M-estimates, Welsch: A robust regression method producing M-type estimates. It is based on iterative 

minimization of sum of squared standardized residuals w(eni), using weights w(e)  exp(e
2
). 

Iteratively Re-Weighted Least Squares are used for computations. 

 

BIR: Bounded influence regression. This method is robust not only against response variable outliers 

but also against influential observations (influence is connected  to dependent variables values). It is 

this second robustness feature that distinguishes the method from previously  discussed robust 

techniques. It might be useful for polynomial models when trying to suppress influence of extreme x 

points (low and high) on the fit. Iteratively Re-Weighted Least Squares are again used for 

computations. 

 

Stepwise All: All possible subsets regression (APSR). This method is a useful tool for selection of 

important variables to be included in  a regression model. The models can be compared by one of the 

following three measures: F-statistic (FIS), Akaike’s information criterion (AIC) and mean squared 

error of prediction (MEP). When APSR is invoked, QC.Expert™ explores all combinations of 

variables from the set of potential explanatory variables (model terms) supplied by the user. A 

regression model is fitted for each of the combinations. The results are outputted both to the protocol 

and to a special output data sheet APSR (the sheet is created automatically). The text output is further 

enhanced by three plots in the graph window. Warning! Maximum number of model terms allowed is 

12 without the intercept, or 13, including  the intercept. The restriction is common for polynomial, full 

quadratic and general models. Since the results are outputted to a data sheet, the restriction comes from 

the maximum number of data sheet rows allowed by the QC.Expert™. The number of all possible 

models gets large very quickly. For m potential model terms (including the intercept), there are 2
m
  1 

possible regressions. Ordinary least squares method is used for all computations. For further details, 

see the Protocol and Graphical output paragraphs. 

 

Data: Here, you can specify which part of data you want to use in computations. You can specify all 

data rows, selected rows only, or the rows which are not selected.  

 



Transformation: Data transformation is defined here, see the previous paragraphs discussing model 

specification.  

 

Output: Invokes a panel allowing you to customize some of the output features, see the next paragraph 

for details.  

 

Help: Invokes help screen. 

 

Cancel: Cancels immediately preceding operation. 

OK: Runs the computations. 

 

Output 

The panel is invoked by the Output button in the Linear regression panel. Some of the output 

features can be customized here, specifying text and/or graphical items requested. There are three lists 

in the panel: Protocols (protocol items), Graphical output (plots or groups of plots), Prediction 

(predictions are requested for variables selected here). The Prediction list variables are used only when 

the Prediction item is checked. Shortcut buttons Minimal, Standard, Extended,  Complete, All, None 

are available. 

 

 

Fig. 5 Output dialog panel  

 

Size of some output items depends on the number of data points. Keep in mind that the output 

can become rather large and difficult to read when all items are requested for large datasets. Next, we 

will describe contents of various individual output items, both text and graphical.     

 

Protocol field 

Summary statistics: Basic summary statistics: mean, standard deviation. Correlation coefficient and 

result of its test are produced for all pairs response-explanatory variable; 

Correlation X: Pairwise correlation coefficients and results of their tests for all possible explanatory 

variables pairs; 

Multicollinearity: Eigenvalues related to the design matrix (matrix of explanatory variables), condition 

number , variance inflation factor (VIF), multiple correlation coefficients; 

ANOVA: overall (arithmetic) mean of the response variable, sums of squares, mean squares for the 

following variability sources: (corrected) total, model, residuals (error). Results of the overall F-test for 

the model, observed F-statistic value, F(1-, m1, nm) quantile; 

Parameters: regression parameters estimates, followed by estimates of their standard errors, individual 

confidence intervals and results of their tests; 

Characteristics: Multiple correlation coefficient R, coefficient of determination R
2
, Rp, mean squared 

prediction error (MEP), Akaike information criterion (AIC); 



Residuals: observed Y, predicted Y, standard deviation of Y, residual standard deviation, residual 

variance, residual sum of squares, residuals, weights, mean of absolute residuals, skewness and 

kurtosis computed from residuals;  

Residual dependence: Wald test for autocorrelation, Durbin-Watson test for autocorrelation,  and sign 

test for lack of residual independence; 

Regression triplet: Fisher-Snedecor test for the model, Scott’s multicollinearity criterion, Cook-

Weisberg test for heteroscedasticity, Jarque-Berr test for normality, tests for dependence; 

Influential data: standard residuals, jackknife residuals, predicted residuals, projection matrix (i.e. hat 

matrix,  H) diagonal, extended hat matrix (H
*
) diagonal, Cook’s distance, Atkinson’s distance, 

Andrews-Pregibon statistic, assessment of individual data points influence upon prediction, parameter 

estimates LD(b), variance LD(s), total influence LD(b,s); 

Likelihood-related influence measure: assessment of individual data points influence upon parameter 

estimates LD(b), variance LD(s), total influence LD(b,s); 

Prediction: Predictor values. Predictions and their confidence intervals. 

Graphical output field 

There are five groups of items in this field:  

Regression curve; 

Residuals: Y-predicted values, Residuals vs. Predicted, Abs. residuals, Squared residuals, residual 

QQ-plot, Autocorrelation, Heteroscedasticity, Jackknife residuals, Predicted residuals; 

Partial regression plots: Partial regression plots, Partial residual plots; 

Influential data: Projection matrix, Predicted residuals, Pregibon, Williams, McCulloh, L-R Plot, 

Cook’s D, Atkinson’s distance; 

Q-Q plots: Standardized residuals, Andrews plot, Predicted residuals, Jackknife residuals. 

 

Prediction field 

You can select variables to be used as predictors of the response. Names of the predictors are 

arbitrary, but their number and order in which they appear must respect the regression model 

specification. When User transformation is selected, the  Variable association panel is invoked (Fig. 

6). There, you must associate selected predictor names listed on right to the model explanatory 

variable names listed on left. Predictors can have arbitrary number of rows (corresponding to points in 

which the predictions are requested). Explanatory variables used in model fitting can be used as 

predictors. 

 

Fig. 6 Variable association panel  

All: Selects all items  

Nothing: Cancels previous selection  

Minimal, Standard, Extended, Complete: Selects protocol and graphical output items according to the 

rules listed in the following table.  

Table 2 Automatic protocol item selection  

Item Minimal Standard Extended Complete 

Summary statistics  o o o 

Correlation X   o o 



Multicollinearity   o o 

ANOVA  o o o 

Parameters o o o o 

Characteristics o o o o 

Residuals   o* o* 

Residual dependence    o 

Regression triplet  o o o 

Influential data   o* o* 

Likelihood related influence measure    o* 

Prediction o** o** o** o** 

* Size of this item depends on the number of data points! 

** Depends on how the Prediction item is set 

 

Table 3 Automatic graphical output item selection  

Item Minimal Standard Extended Complete 

Regression curve o o o o 

Y-prediction  o o o 

Residuals vs. Predicted o o o o 

Abs. Residuals   o o 

Squared residuals    o 

Residual QQ-plot  o o o 

Autocorrelation   o o 

Heteroscedasticity   o o 

Jackknife residuals    o 

Predicted residuals    o 

Partial regression plots   o o 

Partial residual plots    o 

Projection matrix o o o o 

Predicted residuals    o 

Pregibon    o 

Williams  o o o 

McCulloh    o 

L-R plot  o o o 

Cook’s D     o 

Atkinson’s distance    o 

Standardized residuals    o 

Andrews plot   o o 

Predicted residuals  o o o 

Jackknife residuals    o 

Protocol 

Task name Project name, as inputted in the dialog panel. 

Significance level Inputted in the dialog panel. The level is used for all tests and confidence 

intervals. 

Quantile t(1-alpha/2,n-m) t-distribution quantile. 

Quantile F(1-alpha,m,n-

m) 

F-distribution quantile. 

Intercept Is intercept included in the model? 

Number of data rows Number of complete data rows containing values for all model variables. 

 

Number of parameters Number of model terms, including intercept and terms created by 



transformations. For instance, for the 3
rd

 order polynomial, the number of 

terms is 4.  

Method Computation method selected by the user.  

Columns used in the 

model  

List of variables used in the regression model. 

Transformation Transformation type selected by the user.  

  

Summary statistics  

Variable characteristics  

Variable Explanatory variable name. 

Mean Arithmetic average. 

Std. deviation Standard deviation. 

Correlation with Y Correlation between the response variable and the explanatory variable.   

Significance p-value from the correlation coefficient test.  

  

Paired correlations (Xi, 

Xj) 

Paired correlation coefficients for all explanatory variables pairs.  

Multicollinearity 

indication 

 

Variable Name of the variable related to the last column, where multiple correlations 

are listed (it has no relation to the other part of the output since eigenvalues 

cannot be, in general, directly related to individual variables).  

Eigenvalues Eigenvalues of the explanatory variables correlation matrix.  

Condition number, kappa  Condition number (max is the ratio of largest and smallest eigenvalues (it 

is the maximum of condition index; l-th condition index is defined as the 

ratio of largest eigenvalue and the l-th eigenvalue).  max   1000 indicates a 

strong multicollinearity.  

VIF Variance inflation factor, VIF > 10 indicates a strong multicollinearity.  

Multiple correlation Multiple correlation coefficient between the response and all explanatory 

variables.  

  

ANOVA  

Overall Y mean Arithmetic average of the response.  

Source Source of variability in the ANOVA table.  

(Corrected) total Response variability related to the model Y = Mean of(Y). 

Model [Total] – [Error]. 

Error Residual variability, not explained by the model (i.e. the error variability).  

F F-statistic for the model. It should be larger than an appropriate theoretical 

F quantile. If it is larger, the actual model is significantly better than the 

null model Y=Mean of (Y).  

Quantile F (1-alpha, m-1, 

n-m) 

 F-distribution quantile. 

P-value  p-value for the test, if it is smaller than a specified significance level, the 

model is claimed to be significantly better than the null model.  

Conclusion Result of the test, stated in words.  

  

Parameter estimates  

Variable Variable name. 

Estimate Estimate of the regression coefficient associated with the explanatory 

variable.  

Std. error Standard error of the regression coefficient. 

Conclusion Result of the regression coefficient test, stated in words. 

P-value p-value for the regression coefficient test. If it is smaller than a specified 



significance level, significance is claimed.  

Lower limit Lower limit of the confidence interval computed with the pre-specified 

confidence level.  

Upper limit Upper limit of the confidence interval computed with the pre-specified 

confidence level. If zero is included in the interval, the regression 

coefficient is not significantly different from zero. 

  

Characteristics of the 

model fit 

 

Multiple correlation 

coefficient, R 

Multiple correlation coefficient characterizes how closely the model fits the 

data. It does not necessarily express how good the model is. R cannot 

decrease when a new variable is included in the model (it usually increases 

whenever a new variable is added)!   

Coefficient of 

determination R^2 

Square of the multiple correlation coefficient.  

Predicted correlation 

coefficient, Rp 

Predicted correlation coefficient, useful in the context of data containing 

outliers.  

Mean square error of 

prediction, MEP 

The i
th

 error is the difference between actual value of the i
th

 observation and 

its prediction. The prediction  comes from the model based on data with the 

i
th

 row omitted. MEP is a sensitive indicator of some problems, like 

multicollinearity and outliers. It is an important characteristics of the 

regression model quality.   

Akaike information 

criterion 

AIC in the regression context is related to the residual sum of squares, 

penalized by the model size (number of explanatory variables).  

  

Residual analysis  

Characteristic  

Y observed Observed response value, as it appears in the current data sheet.  

Y predicted Predicted response value.  

Std. error of Y Estimated standard error of the prediction.  

Raw residual Difference between observed and predicted response value.  

Residual [%Y] Relative residual, raw residual divided by the response value.  

Weights Weights for individual observations as inputted by the user.  

Residual sum of squares Residual sum of squares cannot decrease when a new variable is included 

in the model (usually, it increases).  

Mean of absolute 

residuals  

Mean of absolute residuals.  

Residual standard 

deviation 

Standard deviation estimated from residuals.  

Residual variance Variance estimated from residuals. 

Residual skewness Skewness estimated from residuals.  

Residual kurtosis Kurtosis estimated from residuals. 

  

Regression triplet testing  

Fisher-Snedecor overall 

test  

Tests whether the actual model is better than the null model including only 

the overall mean.  

F  Computed value of the F test stastistic.  

Quantile F (1-alpha, m-1, 

n-m) 

F-distribution quantile. 

P-value p-value for the test, if it is smaller than a specified significance level, the 

model is claimed to be significantly better than the null model.  

Conclusion Result of the test, stated in words. 

  



Scott‘s multicollinearity 

criterion  

Assessment of multicollinearity („dependence“) among explanatory 

variables. Severe collinearity can inflate regression coefficient variances 

substantially.   

SC criterion Computed test statistic. 

Conclusion Result of the test, stated in words.  

  

Cook-Weisberg test for 

heteroscedasticity 

Tests whether the error variance is constant across values of the 

explanatory variables. When the heteroscedasticity is detected, use of 

appropriate weights should be considered.   

CW criterion Computed test statistics. 

Quantile Chi^2(1-

alpha,1) 


2
-distribution quantile. 

P-value p-value for the test, if it is smaller than a pre-specified significance level, 

significance is claimed.  

Conclusion Result of the test, stated in words.  

  

Jarque-Berra test for 

normality 

Test for error normality based on residuals.  

JB criterion Computed test statistic. 

Quantile Chi^2(1-

alpha,2)  


2
-distribution quantile. 

P-value p-value for the test, if it is smaller than a pre-specified significance level, 

significance is claimed.  

Conclusion Result of the test, stated in words. 

  

Wald test for 

autocorrelation 

Test for autocorrelation among errors. It is based on residuals 

WA criterion Computed test statistic. 

Quantile Chi^2(1-alfa,1) 
2
-distribution quantile. 

P-value p-value for the test, if it is smaller than a pre-specified significance level, 

significance is claimed. 

Conclusion Result of the test, stated in words. 

  

Durbin-Watson test for  

autocorrelation 

Test for autocorrelation among errors. 

DW criterion Computed test statistic. 

Conclusion Result of the test, stated in words. 

  

Sign test A nonparametric test for residual dependence. It can detect some of the 

model inadequacies.   

Sg criterion Computed test statistic. 

Quantile N(1-alpha/2) Normal distribution quantile. 

P-value p-value for the test, if it is smaller than a pre-specified significance level, 

significance is claimed. 

Conclusion Result of the test, stated in words. 

  

Influence measures  

A. Residual analysis  

Characteristic  

Standardized It is sometimes called the studentized residual. Raw residual divided by its 

standard error sr.sqrt(1-Hii). sr is the residual standard deviation.  

Jackknife Jackknife residual. It is similar to the Standardized residual.  Instead of sr, 

the residual standard deviation for the model based on data with i-th row 



deleted is used for the i-th residual. This type of residual is more sensitive 

to outliers.  

Predicted Predicted residual, difference between the i-th response value and 

prediction obtained from the model based on data with the i-th row deleted. 

This type of residual is more sensitive to outliers. 

 

Diag(Hii) Diagonal elements of the projection matrix. A large value indicates a data 

point that can potentially have a high influence upon the regression 

estimates. Sum of the Hii‘s is equal to the number of parameters in the 

model. Potentially influential points are marked in red.  

Diag(H*ii) Diagonal elements of the H
*
 matrix. The matrix is obtained when the 

design matrix (i.e. the matrix containing explanatory variables columns) is 

augmented with the response variable column. A large value indicates a 

data point that can potentially have a high influence upon the regression 

estimates. Sum of the H
*

ii‘s is equal to the number of parameters in the 

model plus one. Potentially influential points are marked in red.  

Cook‘s D Cook‘s distance measures influence of the i-th data point upon the 

regression estimates. It combines measure of potential influence with the 

assessment of whether the point is actually an outlier. Influential points are 

marked in red.  

  

B. Influence analysis  

Characteristic  

Atkinson‘s statistic Atkinson‘s modification of Cook‘s D (1985), both characteristics yield 

similar results usually. Influential points are marked in red.  

Andrews-Pregibon 

statistic 

Andrews-Pregibon statistic measures influence that individual data points 

have on the variance of the regression parameters (volume of the 

confidence ellipsoid). Influential points are marked in red.  

 Y^ influence Relative influence of individual data points upon prediction. Influential 

points are marked in red.  

Parameter influence, 

LD(b) 

Relative influence of individual data points upon parameter estimates. 

Influential points are marked in red.  

Variance influence, 

LD(s) 

Relative influence of individual data points upon residual variance. 

Influential points are marked in red.  

Total influence, LD(b,s) Simultaneous influence of individual data points upon parameter estimates 

and variance. Influential points are marked in red.  

  

Prediction  

Predictor value Values of all model terms. The intercept is represented by the column of 

ones.  

Prediction Predicted value based on the fitted model.  

Lower limit Lower limit of the confidence interval for the predicted mean, computed for 

a pre-specified confidence coefficient . 

Upper limit Upper limit of the confidence interval for the predicted mean, computed for 

a pre-specified confidence coefficient . 

  

 

APSR regression protocol 

APSR (all possible subsets regression) helps to find the best model according to one of the 

following three criteria: F-statistic, Akaike‘s information criterion (AIC) or MEP (mean squared 

prediction error). The APSR procedure fits all possible model terms combinations. The results are 

outputted both to the protocol and to a special output data sheet APSR (created automatically). For 

each possible combination of model terms, the protocol contains a paragraph indicating which terms 



were actually used and values of the three criteria. To save space, each of the model terms is coded by 

a short alphanumeric code (instead of its actual name which can be rather long and complicated). 

These codes are then used for each of the subsets description. The model which is the best in terms of 

a particular criterion can be found easily by sorting the APSR data sheet rows according to the 

criterion. Before sorting, all columns of the APSR sheet have to be selected, see QC.Expert – Sort. 

Alternatively, the point with the best value of a particular criterion can be found on the plot (part of the 

output, see the next paragraph, Graphical output) and selected there. A good model should have large 

value of F, small AIC value and small MEP value. Each of the criteria can favor different models. It is 

generally recommended to explore several models corresponding to very good values of a particular 

criteria (not only the model selected as the best). One should also keep in mind a somewhat different 

nature of the three criteria when interpreting APSR  results. F is the F statistic involved in the usual F 

test, Akaike‘s criterion AIC  n.ln(RSS/n)  2.m judges residual sum of squares together with a model 

size (the number of model terms) penalization. It was derived under much more general circumstances 

from information theory principles. MEP judges model‘s prediction abilities. There is no universally 

„best“ model. Selection of the model should be led by the purposes which it is intended for and subject 

matter knowledge of the modeled situation. 

 

 

Selected 

columns 

Variables which are considered as potential model terms. Each of them is assigned a 

simple code to save space and keep the output easily readable.

Model 

comparison 

A copy of this table is saved to an automatically created data APSR sheet. The sheet 

output can be sorted according to various criteria ((Menu – QCExpert – Sort). Various 

models can be also selected graphically. The Protocol window output cannot be 

manipulated with.  Output contains columns with values of the F, AIC, MEP criteria, as 

well as the residual sum of squares (SSE). Warning: SSE might not directly express 

how good the model is! The largest model has always the smallest SSE.  

  

Graphs 

Regression curve   

 

This plot is not produced when the model contains more than one 

explanatory variable. When only one explanatory variable appears in the 

model, the plot displays the regression curve. Red curves show the 

confidence band around the regression curve, computed for a pre-

specified confidence coefficient. It should be noted that the confidence 

band is realistic only when the fitted model is (approximately) correct. 

This is even more important when predictions further from bulk of 

available data points are considered. Details of the plot can be inspected 

upon zooming part of it. The regression curve can be inspected even 

outside of the interval containing explanatory variable values actually 

used in model fitting by  inverse zooming.  

Residuals  

 

The plot shows how closely the model fits data. Predicted response values 

are plotted on the X axis, while observed response values are plotted on 

the Y axis. Vertical difference between a point and the line corresponds to 

a residual. 



 

Standardized residuals plot. Predicted response is plotted on the X axis, 

while the standardized residuals are plotted on the Y axis. Horizontal line 

corresponds to the mean of residuals. When ordinary least squares are 

used to fit a model including intercept, the residual mean is necessarily 

zero.  

 

Absolute residuals. The order in which a particular data point appears in 

the dataset is plotted on the X axis. The horizontal line corresponds to the 

mean absolute residual.  

 

Squared residuals. The order in which a particular data point appears in 

the dataset is plotted on the X axis. The horizontal line corresponds to the 

mean squared residual (i.e. mean squared error estimate).   

 

Q-Q plot for residual normality check. Approximately normally 

distributed (Gaussian) residuals should plot close to the line. Note that the 

ordinary least squares tends to enhance normal appearance of the 

residuals (so called supernormality effect). When in doubt, one should 

check also the residual Q-Q plot based on some robust method.  

 

Graphical check for the first order autocorrelation in residuals. The i -th 

residual is plotted on the X axis, while the (i-)-th is plotted on the Y  axis. 

When the point cloud suggests a positive slope, positive 1-st order 

autocorrelation is suspected. Negative slope suggests negative 

autocorrelation. An autocorrelation in the residuals might not always be 

connected to the autocorrelation in errors. Residuals tend to be somewhat 

correlated even if the true errors are not.  

 

Graphical check for heteroscedasticity (error variance depends on 

explanatory variable(s)). A non-rectangular shape of the point cloud 

suggests a heteroscedasticity (e.g. a fan shape).  

 

Jackknife residuals (see the Protocol paragraph) are much more sensitive 

to outliers in the response variable than raw residuals. Even the 

jackknifed residuals may fail to detect a cluster of several outliers (they 

mask each other).  

 

Predicted residuals are much more sensitive to outliers than the raw 

residuals. Even the predicted residuals may fail to detect a cluster of 

several outliers (they mask each other).  

Partial regression plots  



 

Partial regression plot displays relationship between the response and a 

given explanatory variable (a single model term) after the relationship has 

been cleared for a possible confounding caused by other variables in the 

model. Slope of the line corresponds to the regression coefficient for the 

variable in the complete model. Closeness of the linear fit on the plot is 

related to the significance test in the complete model.   

 

Partial residual plot. It is a modification of the partial regression plot. 

Nonlinear nature of the plot suggests that a term that is nonlinear in the 

variable just explored should be added to the model (e.g. a higher power 

of the variable might be tried).  

Influence  

 

Plot of the projection matrix HX(X
T
X)

1
X

T
 diagonal elements. (X is the 

design matrix, i.e. the matrix containing explanatory variables as 

columns.) The element sizes are related to potential influence that the 

individual data points might have upon the regression results. The points 

plotted above the red horizontal line are considered to be potentially 

influential.  

 

Predicted versus raw residuals plot. A large deviation from the line 

suggests that the corresponding observation is an outlier. The plot is very 

good in detection of isolated outliers. It is less sensitive to clusters of 

outliers which „mask“ each other.  

 

Pregibon’s plot for simultaneous assessment of outliers and influence. 

The points above the lower (black) line are considered to be potentially 

influential, while the points above the upper (red) line are considered to 

be either substantially influential or outliers. Such data points should be 

checked carefully.   

 

Williams‘ plot for simultaneous assessment of outliers and influence. The 

points located  right from the vertical line are potentially influential, while 

the points above the horizontal line are suspected outliers.  

 

McCulloh-Meter plot for simultaneous assessment of outliers and 

influence. The points located right from the vertical line are potentially 

influential, while the points above the horizontal line are suspected 

outliers. The points above the red line are suspect either because they are 

influential or because they are outliers. 

 

L-R plot for influence assessment. Hyperbolic curves are influence 

contours (connecting the points having the same influence). According to 

the location with respect to the three colored curves, data points can be 

classified as moderately influential, influential and substantially 

influential. The plot is most useful for smaller datasets.  



 

Cook‘s distance is related to the influence data have upon magnitude (not 

variance) of the regression coefficients. 

 

Atkinson‘s distance was derived as modification of the Cook‘s distance. 

Usually, the two yield similar results. Data points plotted above the 

horizontal line are considered to be influential.  

 

Likelihood related influence measure plot. The blue points express 

simultaneously the influence upon parameters and model predictions. 

Violet points express influence upon parameters, green points express the 

influence upon model predictions separately.  

Q-Q plots  

 

Q-Q plot of standardized residuals. It is used to assess residual normality. 

Approximately normally distributed residuals should plot close to the 

line. 

 

Q-Q plot of predicted residuals. It is used to assess residual normality. 

Approximately normally distributed residuals should plot close to the 

line. 

 

Q-Q plot of  jackknife residuals. It is used to assess residual normality. 

Approximately normally distributed residuals should plot close to the 

line.  

 

APSR related plots: 

 

The plot is generated by the APSR (all possible subsets regression) 

procedure. It is useful when looking for the best models in terms of the F 

criterion. Number of variables included in the model is plotted on the X 

axis, while the F value is plotted on the Y axis. A good model should have 

a large F value. The best points (corresponding to models) can be selected 

interactively for further exploration (their detailed description can be 

found in the APSR data sheet, where they are selected automatically, once 

they are marked on the plot). It is highly recommended to choose several 

good looking models, explore them and select among them manually, 

using some subject matter knowledge.  



 

The plot is generated by the APSR (all possible subsets regression) 

procedure. It is useful when looking for the best models in terms of the 

Akaike‘s criterion (AIC). Number of variables included in the model is 

plotted on the X  axis, while the AIC value is plotted on the Y axis. A 

good model should have a small AIC value. The best points 

(corresponding to models) can be selected interactively for further 

exploration (their detailed description can be found in the APSR data 

sheet, where they are selected automatically, once they are marked on the 

plot). It is highly recommended to choose several good looking models, 

explore them and select among them manually, using some subject matter 

knowledge. Bands appear on the plot when there is a highly significant 

term among the potential model terms (much more important than  other 

potential terms).  

 

The plot is generated by the APSR (all possible subsets regression) 

procedure. It is useful when looking for the best models in terms of the 

mean squared error of prediction (MEP). Number of variables included in 

the model is plotted on the X  axis, while the MEP value is plotted on the 

Y axis. A good model should have a small MEP value. The best points 

(corresponding to models) can be selected interactively for further 

exploration (their detailed description can be found in the APSR data 

sheet, where they are selected automatically, once they are marked on the 

plot). It is highly recommended to choose several good looking models, 

explore them and select among them manually, using some subject matter 

knowledge. 

 

 

 


