
SVM - Support Vector Machines 
Menu: QCExpert SVM 

 

The SVM, or Support Vector Machines employs a machine learning method developed in 1990’s 

by Vladimir Naumovich Vapnik (Soviet Academy of Science, Stanford University, Royal Holloway 

College London, AT&T Bell Labs New Jersey, NEC Labs Princeton, Columbia University New York 

and Alexey Jakovlevich Chervonenkis. This method was formally used primarily as a classification tool 

but later was adapted also for regression and distribution density modeling. SVM models make use of the 

theory of empirical risk R and Vapnik-Chervonenkis (VC) dimension of the model. It has been proven 

that the following inequality holds with probability (1 – ): 
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R y f p y d dy   x x x  is risk (or actual mean error of the model), l is number of 

data rows,  is the model parameters vector,  is empirical risk and h is non-

negative integer VC-dimension of the model. The last term on the right-hand side (the square root) is 

called VC-confidence. The following text is a brief and simplified description. For more detailed 

information, we refer the reader to some of the resources given at the end of this chapter. 

 

SVM-C – SVM Classification models 

SVM models minimize suitably defined error (misclassification rate in classification or deviation 

in some metric in regression). For example, in classification of a linearly separable task in two 

dimensions (with two independent numerical variables and one two-level factor response variable 

defining one of two classes such as “A” and “B” for each value) we look for a line which separates 

(discriminates) both classes and allows for maximal distance of the different classes from the separating 

line thus generally minimizing risk of misclassification for any new data, see Fig. 1. The SVM model can 

then be used to predict the class from a given set of independent variable values including probabilities 

for each class. 

 

 

Fig. 1 SVM, separable data, linear model 
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In a non-separable case (like that on Fig. 2), a line is sought that minimizes the misclassification 

“distance” of misclassified (or incorrectly classified) data. On Fig. 2 the separating line minimizes the 

sum of distances of incorrectly classified point “A” and one incorrectly classified point “B” from the 

separating line and maximizes distance of the correctly classified data from the separating line. 

 

 

Fig. 2 SVM, linearly non-separable data, linear model 

 

In case of separable data with binary response (yi = –1 or 1) the length of the normal vector w to the 

separation line (or generally separation hyper plane) is minimized: 

 

 subject to , 

 

which maximizes the width of the gap between the two classes (lines H1 and H2 in Fig. 3). In the case of 

non-separable data, a term for misclass penalization with a user-defined tuning “cost” parameter C is 

added. 
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Geometrical interpretation of non-separable case is illustrated on Fig. 3. The points that lie on (or 

“support”) the separation zone lines H1 and H2 are called “support vectors” – hence the name of the whole 

method. The support vectors are circled on Fig. 3. 

 

Fig. 3 Separation by SVM-hyper plane H for non-separable data 
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Alternatively, instead of the loss coefficient C, a ratio ν (0 < ν < 1) may be employed, 
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ν corresponds to an expected ratio of misclassified cases. 

 

SVM-R – SVM Regression models 

The approach in SVM-Classification was extended to regression by defining a new criterion 

containing an acceptable error of a regression model . Points outside this interval are penalized with a 

linear loss function with the loss coefficient C > 0. The model should then minimize 
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Fig. 4 Principle of SVM regression (SVM-R) 

 

The coefficient vector w corresponds to regression parameters of a linear model, b is the absolute 

term. The user-tuned parameter ε is the half-width of the band in which errors are acceptable, ε is the 

maximal acceptable absolute error. This criterion has some “robustness” in it since it forces the model to 

“squeeze” as much data as possible into a narrow band f(x)   around the model and discard the data that 

do not fit in the band. This makes SVM regression a suitable alternative to robust regression methods in 

case of heavily contaminated data. The criterion ( 0-4) can be rewritten using parameter ν (0<ν<1), 

corresponding to the probability of a given point to lie inside the acceptable region f(x)  . The resulting 

criterion can be written as a constrained minimization with respect to w, b, ξ, ξ
*
, ε: 
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As with any regression, the regression model can be used to predict expected value of the 

independent (response) variable for given values of the independent (predictor) variables. The following 

plot shows the effect on the parameter  on the regression model in a univariate case and the effect of 

robustness. 

 



 
Regression line SVM-R, ν=0.01, or =5 

 
Regression line SVM-R, ν=0.1, or =2 

 
Regression line SVM-R, ν=0.5, or =1 

 
Regression line SVM-R, ν=0.95, or =0.1 

Fig. 5 Effect of loss coefficient on robustness of the SVM-R regression model for C = 1 

 

SVM-OneClass – Distribution density 

The SVM can be used to find a boundary of a model-free distribution in a multivariate sample 

space using the criterion (B. Schoelkopf et al., 2001) 
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This boundary is again a linear hyper plane in x and corresponds approximately to a ν-quantile of 

the distribution. The coefficient ν, 0 1  can be thought of as the ratio of the “outliers” in the data 

sample that will be outside of the distribution (and thus will not influence the model). The user however 

does not label any specific points to be excluded from the model. The model defines the “correct data” 

that belong to the distribution and can also be used to decide whether new points belong to this 

distribution. Robustness of this method makes it suitable for detecting stability and change points in 

complex multivariate processes with any type of distribution. 

 

 

SVM-kernel transformations 

The above described methods lead only to linear models (discrimination, regression) of type w·x 

and as such can hardly be too much useful. One of major achievements of SVM theory is implementation 

of transformation of l-dimensional sample space R l
 spanned by x with a system of nonlinear functions 

 φ x , into a new, n-dimensional space Q n
. Dimensionality n of  φ x , has generally no connection to 

dimensionality of data l, Typically, n > l and n can also be infinite. The linear SVM model is created in 

the new space. Since the relationship between R and Q is non-linear, the linear SVM models created in Q 



are nonlinear in R. This gives SVM models a remarkable flexibility. If transformations are defined using 

quadratic forms 
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T
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(where K is a kernel function), the optimization tasks can be formulated as a convex quadratic constrained 

optimization which can be effectively solved with use of Lagrange multipliers. 

 

The most commonly used kernel functions are RBF type functions (Radial Base Functions) 

defined as 
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Further often used transformations are: 

Polynomial kernel    , exp ; 0
d

T
i j i jK r   x x x x  

Sigmoid kernel    , tanh T
i j i jK r x x x x  

Linear kernel  , T
i j i jK x x x x  

 

Parameters γ and d are set by the user, r is computed. The parameter γ is the steepness of the 

kernel. Higher values of γ give generally more detailed (often also overdetermined and less stable) 

models. With use of kernel transformations, highly non-linear models can be created to describe the data 

x. Stability and prediction capability can be diagnosed with some validation tool,  

 

Examples 

 Here we provide several simple examples to illustrate common SVM models and use and sense of 

the parameters. Despite the fact that SVM are usually employed in high-dimensional problems and rather 

extensive data sets, we restrict ourselves to two-dimensional small samples for easier visualization. 

 

Example 1 – Classification 

For two continuous variables, X and Y we have four possible categorial outputs: A, B, C, D. The 

different levels (values) of the categorial variable are not linearly separable in the plane X, Y. This 

example shows the difference between linear and RBF-transformed SVM classification model. The model 

is trained on the data shown at the figures below. The plots show the separating hyper planes (in this case 

ordinary lines) for the linear model (the first plot) and separating non-linear hypersurfaces (in this case 

curves) for the RBF-SVM models with different value of parameter γ from γ=0.01 to γ=10. Models are 

based on ( 0-2) and ( 0-3). Misclass is he number of incorrectly classified cases. Too big value of γ will 

result in overdetermined models strongly dependent on the particular training data. 

 

 
Example of data table 

 
Linear, Misclass=15 

 
RBF, γ=0.01, Misclass=14 

 



 
RBF, γ=0.1, Misclass=8 

 
 RBF, γ=1, Misclass=5  

 
RBF, γ=10, Miclass=1 

 

Example 3 – Classical Robust and SVM- regression 

 

The parameter ε in eq. ( 0-4) sets the width of an acceptable band around the regression model, as 

illustrated in Fig. 4. Decreasing this parameter at a constant value of γ will increase robustness of the 

model against outlying values with respect to the regression model f(x). In SVM-regression, the data 

points outside the interval    ;f x f x    are considered outliers. With decreasing ε, we can thus 

obtain models in a certain sense similar to robust regression (like regression M-estimates) which may be 

used to detect outliers and to filter contaminated data. The following plots illustrate behavior of classical 

regression and SVM regression with varying ε and γ. SVM tries to “squeeze” as much data as possible 

into f(x)  ε. The sufficiently low parameter γ prevents the model to “go through all points”, as is (nearly) 

the case on the plot (J) below. 

 

 (A) Classical regression, least squares 
 

(B) Classical regression, robust BIR method 

 

 
(C) SVM-R, ε = 2 

 
(D) SVM-R, ε = 1 

 



 
(E) SVM-R, ε = 0.5 

 
(F) SVM-R, ε = 0.2 

 

 

  

 
(G) RBF kernel, ε=2; γ=0.5, cost=10 

(Too loose model – too big ε) 

 

 
(H) RBF kernel, ε=1; γ=0.5, cost=10 

(satisfies all data) 

  



 
(I) RBF kernel, ε=0.3; γ=0.5, cost=10 

(identifies suspicious outlier) 

 
(J) RBF kernel, ε=0.3; γ=5, cost=10 

(useless model, too big γ – just copies the data) 

 

 

Example 5 – Unsupervised learning, distribution density, influence of γ and ν 

The following table of plots illustrates the influence of γ (can be viewed as “stiffness”) and ν (ratio 

of the “discarded” part of the distribution), roughly said - the model will describe 100(1- ν)% of the 

distribution with highest density. Observe the following plots to understand the role of the two 

parameters. 

 

 
γ = 0.1, ν = 0.1 

 
γ = 0.1, ν = 0.2 

 
γ = 0.1, ν = 0.3 

 
γ = 0.1, ν = 0.4 

 

 
γ = 0.1, ν = 0.5 

 
γ = 0.1, ν = 0.6 

 
γ = 0.1, ν = 0.8 

 
γ = 0.1, ν = 0.9 

 

 
γ = 0.2, ν = 0.9 

 
γ = 0.3, ν = 0.9 

 
γ = 0.4, ν = 0.9 

 
γ = 0.5, ν = 0.9 

 

 
γ = 0.6, ν = 0.9 

 
γ = 0.7, ν = 0.9 

 
γ = 0.8, ν = 0.9 

 
γ = 0.9, ν = 0.9 

 

The SVM implementation in QCExpert is based on the code LIB-SVM (c) by Chih-Chung Chang and 

Chih-Jen Lin developed on National Taiwan University, see Chih-Chung Chang and Chih-Jen Lin: 

Library for Support Vector Machines 
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SVM – Classification 

Menu: QCExpert SVM SVM-Classification 

DARWin: SVMC   

Data and parameters 

Data are expected in two or more columns. One column contains the factor levels (numerical or 

text). The other columns (the independent variables, or predictors) are numerical. The factor column 

(dependent variable, or response) must have at least two different values. The independent and dependent 

variables are selected in the dialog window (Fig. 6 A). If prediction is required, the independent variables 

for prediction are selected in the Prediction field. The number of predictors must be the same in 

Independent variable and Prediction fields. The button Default X will select the same predictors as 

selected in Independent variables field. In the SVM Type field select the type of the model criterion: C in ( 

0-2) or ν in ( 0-3) (Cost or Nu). Checking the checkbox Show Support vectors will mark supporting points 

in 2d-plots (the 2d plots are constructed only in the case of 2 independent variables). Column selected in 

Case labels field will be used to label points in plots. Select the required SVM kernel transformation in 

the Kernel field: 

Linear: (xi*xj)      Polynomial: (-gamma*(xi*xj)+r)^d 

Radial Base Function: exp(-gamma*|xi-xj|^2) Sigmoid: tanh(gamma*(xi*xj)+r) 

and select further SVM parameters: Degree (degree of the polynomial in case of Polynomial kernel – 

recommended value 2 or 3), Gamma, Cost (in case of Cost method), Nu (in case of Nu method), R (in 

polynomial or sigmoid kernel). Choose if the shrinkage correction is to be used. If YES is chosen in the 

Probabilities field classification probabilities are computed for all data rows and all existing levels of the 

response factor. Individual weights for each factor level can be set in the child dialog window invoked by 

clicking on the Set weights button (Fig. 6 B). By default, all weights are set to 1 (Unit weights). If there 

are many levels in the response factor, it may become feasible to read the weights from a pre-prepared 

separate column in the data sheet by checking Read weights from column and selecting the column. The 

weights can be understood as (financial) loss raised from incorrectly predicted (classified) particular level 

of the factor which can be different for different levels. OK will start the computation. 

 
(A) 

 
(B) 

Fig. 6  Dialog window for SVM – Classification 



  
(A) 

 
(B) 

Fig. 7 Typical data for SVM-classification (shortened) – (A) Identification of biological species according to 

several morphological measures, (B) Determination of a drug based on the trace elementary chemical 

analysis 

Protocol 

Task name Name from dialog window 

Independent variable Independent variable columns 

Dependent variable Factor response column 

Prediction Columns for prediction (if selected) 

SVM Type Used type of SVM classification, Classification - Cost, or by expected 

rate of misclassification Classification - Nu 

Kernel Selected kernel type: 

Linear: (xi*xj) 

Polynomial: (-gamma*(xi*xj)+r)^d 

Radial Base Function: exp(-gamma*|xi-xj|^2) 

Sigmoidal: tanh(gamma*(xi*xj)+r) 

Degree Used polynomial degree (for Polynomial kernel only) 

Gamma Kernel parameter γ 

Cost Loss coefficient C (only for SVM-C) 

R Kernel parameter R 

Nu SVM parameter nu ν  (only for SVM-Nu) 

Shrinking Model shrinking option used (Yes or No) 

Probabilities Should probabilities for each level be computed? (Yes / No) 

Weights  

Primal parameters 

 

 

Primal parameters are valuable numbers computed only in case of linear 

kernel. They define the resulting model quantitatively and make the model 

generally applicable even without any SVM software, therefore are 

suitable e.g. for official publication. Primal parameters define the linear 

boundary w
T
x + β = w1x1 + w2x2 + … wmxm + β = 0 between all pairs of 

factor levels in the sample space defined by columns X. Absolute terms β 

are in  column Beta, other columns contain coefficients wi associated with 

predictors. Rows of the table are labeled with pairs of the discriminated 

factor levels, such as “A – B”. When predictor values are substituted in the 

linear boundary equation, the sign of the result decides of the predicted 

value A or B: If the result is positive the predicted value is the first of the 

pair. If the result is negative the predicted value is the second of the pair. 

In the example shown below, prediction for the predictor value (x=4, y=5) 

will be: 

w
T
x = 5*(–0.7061) + 4*(–0.445) + 6.9123 = 1.602, 

 

therefore for the predictors (5,4) the model will predict „A“. 



 
 

 
  

  

Misclassification table Summary table of the correct and incorrect classifications for all response 

levels and a contingency table of misclassifications. In the bottom row are 

the actual occurrences of the levels, in the rightmost  column are the 

predicted occurrences of levels. The bottom-right number of the sum of 

the right column, or the bottom row and equals the number of cases 

(rows) in the original data sheet. Other values in the table are numbers of 

correctly or incorrectly classified cases. For example, the value “9” in the 

table below says that the level “A” was nine times misclassified as “B” 

and the value “17” means that out of  30 occurrences (bottom line) of “B”, 

only (or “as many as” – it depends…) 17 was classified correctly. 

 

 
  

Classification 

affectivity 

This table summarizes false positives rate (FP) and true positives rate 

(TP) and area under Receiver Operating Characteristic curve (ROC-AUC) 

calculate as 

[ROC AUC] = (TP*(1 – FP)+1/2*(TP*FP+(1 – TP)*(1 – FP)) 

for each factor level. 

  

  

Support Vectors If checked in the dialog window, lists all detected support vectors. 

 

  

Prediction Table of predicted values for the original data. 

 

Index Row index 

Prediction Predicted factor level from the model 

Data Actual factor level from data 

Residuals 0 in case of correct classification, 1 in case of incorrect classification. 

Level Probabilities 

 

Probability of each possible factor level for the given predictor values. If, 

for example, we have two predictors and the factor has 3 levels (say, A, 

B, C), maps of probable outcome can be easily constructed from this table 

using the QC.Expert™ module Plotting/3DSpline as shown below. 

 



   
–––––Probability of A ––––––––– Probability of B ––––––––– 

Probability of C–––– 

 

  

Prediction If the Prediction was checked in the dialog window, this table gives the 

predicted levels of the factor for new predictor values selected in the 

dialog window including probabilities for each level. Predicted level is the 

level with the highest (not necessarily “high” probability (for many levels 

the highest probability may still be well below 0.5). 

 

Index Row index 

(independent variables) Values of the new predictors 

Prediction Predicted (the most probable) factor level  

Level Probabilities Computed probabilities for all levels 

Graphs 

 

This plot is constructed only in case two independent variables 

(two independent columns). In the colored areas, the 

corresponding factor level is more probable than any other 

level. Every color represents one level, as given in the legend. 

If a factor has m levels the probability of a level to be predicted 

in a particular place must be greater than 1/m. 

 

  

 

 

Plot of prediction boundary is the same plot as the previous 

one, but the boundary between different predictions is plotted 

instead of the areas. The boundary is a place in X where the 

probabilities of the adjacent levels are equal. 

  



 

 

Projection of the new values of predictor into the prediction 

scheme from the previous plot. This plot is constructed if the 

checkbox Prediction was checked in the SVM-Classification 

dialog window. 

  

  

 
(A) 

 
(B) 

 

 
(C) 

Points of the ROC (Receiver Operating Characteristic) for an 

assessment of the affectivity of prediction of each factor level. 

True Positives rate (TP) are on the vertical axis, false positives 

rate, or FP are on the horizontal axis. In the left-upper corner, 

near (0,1) the prediction is very good (plot A). Moderately 

predicted levels are inside the triangle (B). Points below the 

diagonal (C) correspond to poor prediction where prediction is 

worse than throwing coin. 

 

SVM – Regression 

Menu: QCExpert SVM SVM-Regression 

DARWin SVMR   



Data and parameters 

Data are expected in two or more columns. One column contains the numerical dependent 

variable. The other one or more columns (the independent variables, or predictors) are also numerical. 

The independent and dependent variables are selected in the dialog window (Fig. 8). If the prediction is 

required, the independent variables for prediction are selected in the Prediction field. The number of 

predictors must be the same in Independent variable and Prediction fields. The button Default X will 

select the same predictors as selected in Independent variables field. In the SVM Type field select the type 

of the model criterion:  in ( 0-5) or ν in ( 0-4) (Epsilon or Nu). Checking the checkbox Show Support 

vectors will mark supporting points in 2d-plots (the 2d plots are constructed only in the case of 2 

independent variables). Column selected in Case labels field will be used to label points in plots. Select 

the required SVM kernel transformation in the Kernel field. 

 

Linear: (xi*xj) 

Polynomial: (-gamma*(xi*xj)+r)^d 

Radial Base Function: exp(-gamma*|xi-xj|^2) 

Sigmoid: tanh(gamma*(xi*xj)+r) 

 

and select further SVM parameters: Degree (degree of the polynomial in case of Polynomial kernel – 

recommended value 2 or 3), Gamma, Cost (in case of Epsilon method), Nu (in case of Nu method), 

Epsilon (in case of Epsilon method), R (in polynomial or sigmoid kernel). Choose if the shrinkage 

correction is to be used. OK will start the computation. 

 

 

Fig. 8  Dialog window for SVM - Regression 

Protocol 

Task name Name from dialog window 

Independent variable Independent variable columns 

Dependent variable Dependent variable (response) column 

Prediction Columns for prediction (if selected) 

SVM Type Used type of SVM regression, Epsilon, or expected rate of outliers Nu. 

Kernel Selected kernel type: 

Linear: (xi*xj) 

Polynomial: (-gamma*(xi*xj)+r)^d 

Radial Base Function: exp(-gamma*|xi-xj|^2) 



Sigmoidal: tanh(gamma*(xi*xj)+r) 

Degree Used polynomial degree (for Polynomial kernel only) 

Gamma Kernel parameter γ 

Cost Loss function coefficient C 

Epsilon Maximal error ε (only for SVM type =  Epsilon) 

R Kernel parameter R 

Nu SVM parameter nu ν  (only for SVM-Nu) 

Shrinking Model shrinking option used (Yes or No) 

  

Support Vectors If checked in the dialog window, lists all detected support vectors. 

 

  

Prediction Table of predicted values for the original data. 

Index Row index 

Prediction Predicted dependent variable value from the model 

Data Actual dependent variable value from data 

Residuals Regression residuals y – f(x) 

  

Prediction If the Prediction was checked in the dialog window, this table gives the 

predicted values of the response for new predictor values selected in the 

dialog window. 

Index Row index 

(independent variables) Values of the new predictors 

Prediction Predicted values of the response 

  

 

Graphs 

 

SVM Prediction plot plots measured response (Y-data) against 

predicted response (Y-Pred). In case of perfect fit (which 

should be avoided as perfect fit with very small or zero 

residuals is typically a bad model as it just copies the actual 

data, makes no generalization and provides usually very poor 

prediction) all points lie on the line. 

 

  

 
 

SVM Residuals plot visualizes vertical distances of the points 

from the line in the Prediction plot (above). This plot can help 

to diagnose the model and fit, as suggested at the following 

pictures. 

 

 
Probably 

underfitted: 

increase γ or 

decrease  

 
maybe a 

reasonable fit 

 
Probably 

overfitted:  

decrease γ or 

increase  

 

 



  

 

If the independent variable is univariate (one column only) the 

data and regression function is plotted to assess the model 

visually. 

 

SVM – Density 

Menu: QCExpert SVM SVM-Density 

Data and parameters 

Numerical data are expected in one or more columns. There is no dependent variable. Rows with 

missing data (empty cells) are discarded. Variables are selected in the dialog window (Fig. 9). If 

prediction is required the variables for prediction are selected in the Prediction field (Prediction checkbox 

must be checked). The number of predictors must be the same in Independent variable and Prediction 

fields. The button Default X will select the same predictors as selected in Independent variables field. 

Checking the checkbox Show Support vectors will mark suporting points in 2d-plots (the 2d plots are 

constructed only in the case of 2 independent variables). Column selected in Case labels field will be 

used to label points in plots. One column can be selected in Point color in plot field to distinguish color of 

the points in plot (different values or texts in this column will color the points with different colors). 

Select the required SVM kernel transformation in the Kernel field: 

 

Linear: (xi*xj) 

Polynomial: (-gamma*(xi*xj)+r)^d 

Radial Base Function: exp(-gamma*|xi-xj|^2) 

Sigmoid: tanh(gamma*(xi*xj)+r). 

 

 

Fig. 9  Dialog window for SVM – Probability Density 

If needed, change further parameters: Degree (degree of the polynomial kernel – for polynomial kernel 

only), value of Gamma kernel parameter γ, parameter ν (Nu), another kernel parameter R and select the 

Shrinking option. Then, press OK to start computation. 



 

Protocol 

Task name Name from dialog window 

Independent variable Independent variable columns 

Prediction Columns for prediction (if selected) 

  

SVM Type “Probability density” 

Kernel Selected kernel type: 

Linear: (xi*xj) 

Polynomial: (-gamma*(xi*xj)+r)^d 

Radial Base Function: exp(-gamma*|xi-xj|^2) 

Sigmoidal: tanh(gamma*(xi*xj)+r) 

Degree Used polynomial degree (for Polynomial kernel only) 

Gamma Kernel parameter γ 

Nu The specifies parameter ν  (only for type Nu) 

R Kernel parameter R 

Shrinking Model shrinking option used (Yes or No) 

  

Support Vectors If checked in the dialog window, lists all detected support vectors. 

 

  

  

Prediction Table of predicted values for the original data. 

 

Index Row index 

Prediction Membership of individual original data points (data rows) to the inner ν – 

quantile of the density model: 1 = inside the density, – 1 = outside the 

density. 

  

Prediction If the Prediction was checked in the dialog window, this table gives the 

predicted membership of individual “new” data points (data rows selected 

in the Prediction field of the dialog window) to the inner ν – quantile of the 

density model: 1 = inside the density, – 1 = outside the density. 

 

Index Row index 

(variables) Variables used for prediction 

Prediction Predicted membership 

 

Graphs 

 

For 2 columns of independent variables this plot visualizes an 

area of 100(1 – ν)% volume of data with the highest density. 

 

  



 

For 2 columns of independent variables this plot visualizes the 

border of an area of 100(1 – ν)% volume of data with the 

highest density. 

 

 

 


