SVM - Support Vector Machines
| Menu: | QCExpert | SVM |

The SVM, or Support Vector Machines employs a machine learning method developed in 1990’s
by Vladimir Naumovich Vapnik (Soviet Academy of Science, Stanford University, Royal Holloway
College London, AT&T Bell Labs New Jersey, NEC Labs Princeton, Columbia University New York
and Alexey Jakovlevich Chervonenkis. This method was formally used primarily as a classification tool
but later was adapted also for regression and distribution density modeling. SVM models make use of the
theory of empirical risk R and Vapnik-Chervonenkis (VC) dimension of the model. It has been proven
that the following inequality holds with probability (1 — 7):

h(In(21/h)+1)-In(7/4) (0-1)

R(a)< Ry, (a)+J | ,

where R(a)=f%‘y— f (x,a)‘ p(x,y)dxdy is risk (or actual mean error of the model), | is number of

14 . .. . .
:Eg‘yi —f (x,a)‘ is empirical risk and h is non-
negative integer VC-dimension of the model. The last term on the right-hand side (the square root) is
called VC-confidence. The following text is a brief and simplified description. For more detailed
information, we refer the reader to some of the resources given at the end of this chapter.

data rows, o is the model parameters vector, R, (@)

SVM-C - SVM Classification models

SVM models minimize suitably defined error (misclassification rate in classification or deviation
in some metric in regression). For example, in classification of a linearly separable task in two
dimensions (with two independent numerical variables and one two-level factor response variable
defining one of two classes such as “A” and “B” for each value) we look for a line which separates
(discriminates) both classes and allows for maximal distance of the different classes from the separating
line thus generally minimizing risk of misclassification for any new data, see Fig. 1. The SVM model can
then be used to predict the class from a given set of independent variable values including probabilities
for each class.
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Fig. 1 SVM, separable data, linear model



In a non-separable case (like that on Fig. 2), a line is sought that minimizes the misclassification
“distance” of misclassified (or incorrectly classified) data. On Fig. 2 the separating line minimizes the
sum of distances of incorrectly classified point “A” and one incorrectly classified point “B” from the
separating line and maximizes distance of the correctly classified data from the separating line.
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Fig. 2 SVM, linearly non-separable data, linear model

In case of separable data with binary response (y; = —1 or 1) the length of the normal vector w to the
separation line (or generally separation hyper plane) is minimized:

2
f(@:@ subject to y; (W-Xx;+b)-1>0,i=1,...1,

which maximizes the width of the gap between the two classes (lines H; and H; in Fig. 3). In the case of
non-separable data, a term for misclass penalization with a user-defined tuning “cost” parameter C is
added.

2 | (W - X. >1-&.,i=1..,1
f(X)=M+CZ§i subject to V(WX +b) 21, 1= (0-2)

2 =) £>0i=1,..,1

Geometrical interpretation of non-separable case is illustrated on Fig. 3. The points that lie on (or
“support”) the separation zone lines H; and H; are called “support vectors” — hence the name of the whole
method. The support vectors are circled on Fig. 3.
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Fig. 3 Separation by SVM-hyper plane H for non-separable data



Alternatively, instead of the loss coefficient C, a ratio v (0 < v < 1) may be employed,

(W-x,+b)>p—-¢,i=1..,1

: (0-3)
&20,i=1..,1,p20

2
w 1 .
f(x)= u—VPﬁLIZéﬁ subject to %
i=1
v corresponds to an expected ratio of misclassified cases.

SVM-R - SVM Regression models

The approach in SVM-Classification was extended to regression by defining a new criterion
containing an acceptable error of a regression model €. Points outside this interval are penalized with a
linear loss function with the loss coefficient C > 0. The model should then minimize
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Fig. 4 Principle of SVM regression (SVM-R)

The coefficient vector w corresponds to regression parameters of a linear model, b is the absolute
term. The user-tuned parameter ¢ is the half-width of the band in which errors are acceptable, ¢ is the
maximal acceptable absolute error. This criterion has some “robustness” in it since it forces the model to
“squeeze” as much data as possible into a narrow band f(X) = ¢ around the model and discard the data that
do not fit in the band. This makes SVM regression a suitable alternative to robust regression methods in
case of heavily contaminated data. The criterion ( 0-4) can be rewritten using parameter v (0<v<1),

corresponding to the probability of a given point to lie inside the acceptable region f(x) + & The resulting
criterion can be written as a constrained minimization with respecttow, b, &, &, e:

2 | (wW-x, +b)—y, <e+¢
[w] 1 N *
f(x)= 5 +C V5+|‘Z(§i +§i) subjectto y,—(w-x;+b)<e&+¢ (0-5)
- E,E>0,i=1..,l,6>0
As with any regression, the regression model can be used to predict expected value of the

independent (response) variable for given values of the independent (predictor) variables. The following

plot shows the effect on the parameter ¢ on the regression model in a univariate case and the effect of
robustness.
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Fig. 5 Effect of loss coefficient on robustness of the SVM-R regression model for C =1

SVM-OneClass — Distribution density
The SVM can be used to find a boundary of a model-free distribution in a multivariate sample
space using the criterion (B. Schoelkopf et al., 2001)

M_ 1.: _ W-X, > p-&,i=1..,1
TPt CiZ:l:(;) subject to E30i-1. |

(0-6)

This boundary is again a linear hyper plane in x and corresponds approximately to a v-quantile of
the distribution. The coefficient v, 0<v <1can be thought of as the ratio of the “outliers” in the data
sample that will be outside of the distribution (and thus will not influence the model). The user however
does not label any specific points to be excluded from the model. The model defines the “correct data”
that belong to the distribution and can also be used to decide whether new points belong to this
distribution. Robustness of this method makes it suitable for detecting stability and change points in
complex multivariate processes with any type of distribution.

SVM-kernel transformations

The above described methods lead only to linear models (discrimination, regression) of type w-x
and as such can hardly be too much useful. One of major achievements of SVM theory is implementation
of transformation of I-dimensional sample space & ' spanned by x with a system of nonlinear functions

¢(x), into a new, n-dimensional space & ". Dimensionality n of ¢(x), has generally no connection to

dimensionality of data I, Typically, n > | and n can also be infinite. The linear SVM model is created in
the new space. Since the relationship between K and & is non-linear, the linear SVM models created in &



are nonlinear in K. This gives SVM models a remarkable flexibility. If transformations are defined using
quadratic forms

T
K(Xi,xj)=q>(xi) w(xj),

(where K is a kernel function), the optimization tasks can be formulated as a convex quadratic constrained

optimization which can be effectively solved with use of Lagrange multipliers.

The most commonly used kernel functions are RBF type functions (Radial Base Functions)
defined as

K(x X ) exp( 7HX JH) (0-7)

Further often used transformations are:

d
Polynomial kernel K(xi,xj)zexp(;/X,T +r); y>0

Sigmoid kernel K(X X ) tanh(y/x xj+r)

Linear kernel K(Xi ,Xj):xiTXj

Parameters y and d are set by the user, r is computed. The parameter y is the steepness of the
kernel. Higher values of y give generally more detailed (often also overdetermined and less stable)
models. With use of kernel transformations, highly non-linear models can be created to describe the data

x. Stability and prediction capability can be diagnosed with some validation tool,

Examples

Here we provide several simple examples to illustrate common SVM models and use and sense of
the parameters. Despite the fact that SVM are usually employed in high-dimensional problems and rather
extensive data sets, we restrict ourselves to two-dimensional small samples for easier visualization.

Example 1 — Classification

For two continuous variables, X and Y we have four possible categorial outputs: A, B, C, D. The
different levels (values) of the categorial variable are not linearly separable in the plane X, Y. This
example shows the difference between linear and RBF-transformed SVM classification model. The model
is trained on the data shown at the figures below. The plots show the separating hyper planes (in this case
ordinary lines) for the linear model (the first plot) and separating non-linear hypersurfaces (in this case
curves) for the RBF-SVM models with different value of parameter y from y=0.01 to y=10. Models are
based on ( 0-2) and ( 0-3). Misclass is he number of incorrectly classified cases. Too big value of y will
result in overdetermined models strongly dependent on the particular training data.
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Example of data table

Linear, Misclass=15

RBF, y=0.01, Misclass=14
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RBF, y=0.1, Misclass=8 RBF, y=1, Misclass=5 RBF, y=10, Miclass=1

Example 3 — Classical Robust and SVM-¢ regression

The parameter ¢ in eq. ( 0-4) sets the width of an acceptable band around the regression model, as
illustrated in Fig. 4. Decreasing this parameter at a constant value of y will increase robustness of the
model against outlying values with respect to the regression model f(x). In SVM-regression, the data

points outside the interval ( f (X)—&; f (X)+&) are considered outliers. With decreasing &, we can thus

obtain models in a certain sense similar to robust regression (like regression M-estimates) which may be
used to detect outliers and to filter contaminated data. The following plots illustrate behavior of classical
regression and SVM regression with varying ¢ and y. SVM tries to “squeeze” as much data as possible

into f(x) £ . The sufficiently low parameter y prevents the model to “go through all points”, as is (nearly)
the case on the plot (J) below.
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(A) Classical regression, least squares (B) Classical regression, robust BIR method
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(C) SVM-R, £ =2 (D) SVM-R, £ =1



SVM-Regression, Eps=0.6

SVM-Regression, Eps=0.2

(E) SVM-R, £ = 0.5

(F) SVM-R, £ = 0.2

Y SWM-Regression, Eps=2

Y SWM-Regression, Eps=1

Y Reqgression Residuals

(G) RBF kernel, £=2; y=0.5, cost=10
(Too loose model — too big )

(H) RBF kernel, e=1; y=0.5, cost=10
(satisfies all data)

b SWh-Regression, Eps=03

s SWh-Regression, Eps=03




Regression Residuals Y
19 0.401

Regression Residuals

03— & & & % %

0.204

0.104

- -0.00
-0.104

0201 .

-0.304

’2 T T T T T ’O 40 T T T T T
1 2 3 4 5 B T 8 9 10 1 2 3 4 5 B T 8 9 10

[

[

(1) RBF kernel, €=0.3; y=0.5, cost=10
(identifies suspicious outlier)

(J) RBF kernel, €=0.3; y=5, cost=10
(useless model, too big y — just copies the data)

Example 5 — Unsupervised learning, distribution density, influence of y and v

The following table of plots illustrates the influence of y (can be viewed as “stiffness”) and v (ratio
of the “discarded” part of the distribution), roughly said - the model will describe 100(1- v)% of the
distribution with highest density. Observe the following plots to understand the role of the two
parameters.
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The SVM implementation in QCExpert is based on the code LIB-SVM (c) by Chih-Chung Chang and
Chih-Jen Lin developed on National Taiwan University, see Chih-Chung Chang and Chih-Jen Lin:
Library for Support Vector Machines
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SVM - Classification

Menu: QCExpert | SVM | SVM-Classification

DARWin: | SVMC

Data and parameters

Data are expected in two or more columns. One column contains the factor levels (hnumerical or
text). The other columns (the independent variables, or predictors) are numerical. The factor column
(dependent variable, or response) must have at least two different values. The independent and dependent
variables are selected in the dialog window (Fig. 6 A). If prediction is required, the independent variables
for prediction are selected in the Prediction field. The number of predictors must be the same in
Independent variable and Prediction fields. The button Default X will select the same predictors as
selected in Independent variables field. In the SVM Type field select the type of the model criterion: C in (
0-2) or vin ( 0-3) (Cost or Nu). Checking the checkbox Show Support vectors will mark supporting points
in 2d-plots (the 2d plots are constructed only in the case of 2 independent variables). Column selected in
Case labels field will be used to label points in plots. Select the required SVM kernel transformation in
the Kernel field:

Linear: (xi*xj) Polynomial: (-gamma™*(xi*xj)+r)"d
Radial Base Function: exp(-gamma*|xi-xj|*2) Sigmoid: tanh(gamma*(xi*xj)+r)

and select further SVM parameters: Degree (degree of the polynomial in case of Polynomial kernel —
recommended value 2 or 3), Gamma, Cost (in case of Cost method), Nu (in case of Nu method), R (in
polynomial or sigmoid kernel). Choose if the shrinkage correction is to be used. If YES is chosen in the
Probabilities field classification probabilities are computed for all data rows and all existing levels of the
response factor. Individual weights for each factor level can be set in the child dialog window invoked by
clicking on the Set weights button (Fig. 6 B). By default, all weights are set to 1 (Unit weights). If there
are many levels in the response factor, it may become feasible to read the weights from a pre-prepared
separate column in the data sheet by checking Read weights from column and selecting the column. The
weights can be understood as (financial) loss raised from incorrectly predicted (classified) particular level
of the factor which can be different for different levels. OK will start the computation.

a Set weldiif B
Tak rame  |3hest] = Unit weights
Independent variable Dependert variatle -Factor ¥ Prediction Diefault X ¥ 5et weights manualy
Factor wieight
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Fig. 6 Dialog window for SVM — Classification



Length  Width Type
6.25 211 A MNa K Zn Fe Ni Cr Al Origin
6.05 245 A 1015 079 531 081 012 057 813 Afg
6.19 237 A 993 053 304 115 0.1 032 617 Colu
5.08 255 8 812  0.63 478 0.9 0.13 0.43 6.47 Colu
5.28 2.9 B 9.29 0.52 3.7 0.6 0.15 0.3 6.66 Mex
5.54 2.58 B New samples to be classified 10.08 0.51 5.26 0.89 0.14 0.44 7.79 Tur
6.4 2.9 C Length width 13.21 0.83 4,05 0.77 0.17 0.57 8.01 Tur
6.23 3.31 C 6.25 211 11.32 0.59 5.82 0.98 0.2 0.57 8.99 Mex
6.44 3.16 C 6.05 246 13.72 0.52 4.69 0.71 0.13 0.37 5.84 Afg
617 214 A 6.15 537 1072 098 423 08 011 033 571 Afg
5.28 2.14 B 5.28 2.55 13.31 0.66 5.54 0.67 0.13 0.37 5.85 Morr
6.46 2.72 C 5.28 2.9 13.53 0.65 3.15 1.01 0.13 0.35 9.8 Morr
(A) (B)

Fig. 7 Typical data for SVM-classification (shortened) — (A) Identification of biological species according to
several morphological measures, (B) Determination of a drug based on the trace elementary chemical
analysis

Protocol

Task name | Name from dialog window

Independent variable | Independent variable columns

Dependent variable | Factor response column

Prediction | Columns for prediction (if selected)

SVM Type | Used type of SVM classification, Classification - Cost, or by expected
rate of misclassification Classification - Nu

Kernel | Selected kernel type:

Linear: (xi*xj)

Polynomial: (-gamma*(xi*xj)+r)d

Radial Base Function: exp(-gamma*|xi-xj|"2)
Sigmoidal: tanh(gamma*(xi*xj)+r)

Degree | Used polynomial degree (for Polynomial kernel only)

Gamma | Kernel parameter y

Cost | Loss coefficient C (only for SVM-C)

R | Kernel parameter R

Nu | SVM parameter nu v (only for SVM-Nu)

Shrinking | Model shrinking option used (Yes or No)

Probabilities | Should probabilities for each level be computed? (Yes / No)

Weights

Primal parameters | Primal parameters are valuable numbers computed only in case of linear
kernel. They define the resulting model quantitatively and make the model
generally applicable even without any SVM software, therefore are
suitable e.g. for official publication. Primal parameters define the linear
boundary w'x + 8 = Wyxg + WoX + ... WiXn + 8 = O between all pairs of
factor levels in the sample space defined by columns X. Absolute terms g
are in column Beta, other columns contain coefficients w; associated with
predictors. Rows of the table are labeled with pairs of the discriminated
factor levels, such as “A — B”. When predictor values are substituted in the
linear boundary equation, the sign of the result decides of the predicted
value A or B: If the result is positive the predicted value is the first of the
pair. If the result is negative the predicted value is the second of the pair.
In the example shown below, prediction for the predictor value (x=4, y=5)
will be:

w'x = 5*%(-0.7061) + 4*(~0.445) + 6.9123 = 1.602,

therefore for the predictors (5,4) the model will predict ,,A*.
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Misclassification table

Summary table of the correct and incorrect classifications for all response
levels and a contingency table of misclassifications. In the bottom row are
the actual occurrences of the levels, in the rightmost column are the
predicted occurrences of levels. The bottom-right number of the sum of
the right column, or the bottom row and equals the number of cases
(rows) in the original data sheet. Other values in the table are numbers of
correctly or incorrectly classified cases. For example, the value “9” in the
table below says that the level “A” was nine times misclassified as “B”
and the value “17” means that out of 30 occurrences (bottom line) of “B”,
only (or “as many as” — it depends...) 17 was classified correctly.

A B C Total
il 19 ] 1 26
B 9 17 2 28
C 2 7 27 36
Total 30 30 30 a0

Classification
affectivity

This table summarizes false positives rate (FP) and true positives rate
(TP) and area under Receiver Operating Characteristic curve (ROC-AUC)
calculate as

[ROC AUC] = (TP*(1 — FP)+1/2*(TP*FP+(1 — TP)*(1 — FP))
for each factor level.

Support Vectors

If checked in the dialog window, lists all detected support vectors.

Prediction

Table of predicted values for the original data.

Index

Row index

Prediction

Predicted factor level from the model

Data

Actual factor level from data

Residuals

0 in case of correct classification, 1 in case of incorrect classification.

Level Probabilities

Probability of each possible factor level for the given predictor values. If,
for example, we have two predictors and the factor has 3 levels (say, A,
B, C), maps of probable outcome can be easily constructed from this table
using the QC.Expert™ module Plotting/3DSpline as shown below.




Probability of A— Probability of B
Probability of C——

Prediction | If the Prediction was checked in the dialog window, this table gives the
predicted levels of the factor for new predictor values selected in the
dialog window including probabilities for each level. Predicted level is the
level with the highest (not necessarily “high” probability (for many levels
the highest probability may still be well below 0.5).

Index | Row index
(independent variables) | Values of the new predictors
Prediction | Predicted (the most probable) factor level

Level Probabilities

Computed probabilities for all levels

Graphs

SVM

1

This plot is constructed only in case two independent variables
(two independent columns). In the colored areas, the
corresponding factor level is more probable than any other
level. Every color represents one level, as given in the legend.
If a factor has m levels the probability of a level to be predicted
in a particular place must be greater than 1/m.
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Plot of prediction boundary is the same plot as the previous
one, but the boundary between different predictions is plotted
instead of the areas. The boundary is a place in X where the
probabilities of the adjacent levels are equal.
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Projection of the new values of predictor into the prediction
scheme from the previous plot. This plot is constructed if the
checkbox Prediction was checked in the SVM-Classification
dialog window.
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Points of the ROC (Receiver Operating Characteristic) for an
assessment of the affectivity of prediction of each factor level.
True Positives rate (TP) are on the vertical axis, false positives
rate, or FP are on the horizontal axis. In the left-upper corner,
near (0,1) the prediction is very good (plot A). Moderately
predicted levels are inside the triangle (B). Points below the
diagonal (C) correspond to poor prediction where prediction is
worse than throwing coin.
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Data and parameters

Data are expected in two or more columns. One column contains the numerical dependent
variable. The other one or more columns (the independent variables, or predictors) are also numerical.
The independent and dependent variables are selected in the dialog window (Fig. 8). If the prediction is
required, the independent variables for prediction are selected in the Prediction field. The number of
predictors must be the same in Independent variable and Prediction fields. The button Default X will
select the same predictors as selected in Independent variables field. In the SVM Type field select the type
of the model criterion: £ in ( 0-5) or v in ( 0-4) (Epsilon or Nu). Checking the checkbox Show Support
vectors will mark supporting points in 2d-plots (the 2d plots are constructed only in the case of 2
independent variables). Column selected in Case labels field will be used to label points in plots. Select
the required SVM kernel transformation in the Kernel field.

Linear: (xi*xj)

Polynomial: (-gamma*(xi*xj)+r)d

Radial Base Function: exp(-gamma*|xi-xj|"2)
Sigmoid: tanh(gamma*(xi*xj)+r)

and select further SVM parameters: Degree (degree of the polynomial in case of Polynomial kernel —
recommended value 2 or 3), Gamma, Cost (in case of Epsilon method), Nu (in case of Nu method),
Epsilon (in case of Epsilon method), R (in polynomial or sigmoid kernel). Choose if the shrinkage
correction is to be used. OK will start the computation.

ﬂ
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Fig. 8 Dialog window for SVM - Regression

Protocol

Task name | Name from dialog window

Independent variable | Independent variable columns

Dependent variable | Dependent variable (response) column

Prediction | Columns for prediction (if selected)

SVM Type | Used type of SVM regression, Epsilon, or expected rate of outliers Nu.

Kernel | Selected kernel type:

Linear: (xi*xj)

Polynomial: (-gamma*(xi*xj)+r)d

Radial Base Function: exp(-gamma*|xi-xj|"2)




Sigmoidal: tanh(gamma*(xi*xj)+r)

Degree | Used polynomial degree (for Polynomial kernel only)
Gamma | Kernel parameter y
Cost | Loss function coefficient C
Epsilon | Maximal error & (only for SVM type = Epsilon)
R | Kernel parameter R
Nu | SVM parameter nu v (only for SVM-Nu)

Shrinking | Model shrinking option used (Yes or No)

Support Vectors | If checked in the dialog window, lists all detected support vectors.

Prediction | Table of predicted values for the original data.

Index | Row index
Prediction | Predicted dependent variable value from the model
Data | Actual dependent variable value from data

Residuals | Regression residuals y — f(x)

Prediction | If the Prediction was checked in the dialog window, this table gives the
predicted values of the response for new predictor values selected in the
dialog window.

Index | Row index
(independent variables) | Values of the new predictors
Prediction | Predicted values of the response
Graphs
= SVM - Frediction SVM Prediction plot plots measured response (Y-data) against
> predicted response (Y-Pred). In case of perfect fit (which
i should be avoided as perfect fit with very small or zero
& residuals is typically a bad model as it just copies the actual
i data, makes no generalization and provides usually very poor
# prediction) all points lie on the line.
LRI & 1 & @ :Y -
- SVM - Residuals SVM Residuals plot visualizes vertical distances of the points
from the line in the Prediction plot (above). This plot can help
o to diagnose the model and fit, as suggested at the following
pictures.
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o} SYM-Regression Model If the independent variable is univariate (one column only) the
o : data and regression function is plotted to assess the model
j: visually.
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SVM - Density

| Menu: | QCExpert | SVM | SVM-Density |

Data and parameters

Numerical data are expected in one or more columns. There is no dependent variable. Rows with
missing data (empty cells) are discarded. Variables are selected in the dialog window (Fig. 9). If
prediction is required the variables for prediction are selected in the Prediction field (Prediction checkbox
must be checked). The number of predictors must be the same in Independent variable and Prediction
fields. The button Default X will select the same predictors as selected in Independent variables field.
Checking the checkbox Show Support vectors will mark suporting points in 2d-plots (the 2d plots are
constructed only in the case of 2 independent variables). Column selected in Case labels field will be
used to label points in plots. One column can be selected in Point color in plot field to distinguish color of
the points in plot (different values or texts in this column will color the points with different colors).
Select the required SVM kernel transformation in the Kernel field:

Linear: (xi*xj)

Polynomial: (-gamma*(xi*xj)+r)"d

Radial Base Function: exp(-gamma*|xi-xj|"2)
Sigmoid: tanh(gamma*(xi*xj)+r).
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Fig. 9 Dialog window for SVM — Probability Density

If needed, change further parameters: Degree (degree of the polynomial kernel — for polynomial kernel
only), value of Gamma kernel parameter vy, parameter v (Nu), another kernel parameter R and select the
Shrinking option. Then, press OK to start computation.



Protocol

Task name

Name from dialog window

Independent variable

Independent variable columns

Prediction

Columns for prediction (if selected)

SVM Type

“Probability density”

Kernel

Selected kernel type:

Linear: (xi*xj)

Polynomial: (-gamma*(xi*xj)+r)d

Radial Base Function: exp(-gamma*|xi-xj|"2)
Sigmoidal: tanh(gamma™*(xi*xj)+r)

Degree

Used polynomial degree (for Polynomial kernel only)

Gamma

Kernel parameter y

Nu

The specifies parameter v (only for type Nu)

R

Kernel parameter R

Shrinking

Model shrinking option used (Yes or No)

Support Vectors

If checked in the dialog window, lists all detected support vectors.

Prediction

Table of predicted values for the original data.

Index

Row index

Prediction

Membership of individual original data points (data rows) to the inner v —
quantile of the density model: 1 = inside the density, — 1 = outside the
density.

Prediction

If the Prediction was checked in the dialog window, this table gives the
predicted membership of individual “new” data points (data rows selected
in the Prediction field of the dialog window) to the inner v — quantile of the
density model: 1 = inside the density, — 1 = outside the density.

Index

Row index

(variables)

Variables used for prediction

Prediction

Predicted membership

Graphs

e SV

For 2 columns of independent variables this plot visualizes an
area of 100(1 — v)% volume of data with the highest density.
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For 2 columns of independent variables this plot visualizes the
border of an area of 100(1 — v)% volume of data with the
highest density.




