Two-sample comparison

Menu: QCExpert Two-sample comparison

This module is intended for a detailed analysis of two datasets (two samples). The module offers two analyses: independent samples comparison, and paired samples comparison.

Independent samples x, y feature no mutual relationship. They can have different sample sizes, in general. Ordering of the elements of both samples is arbitrary and can be changed without any information loss. Main point of this analysis is to decide, whether the expected values E(x) and E(y) of the two samples are different. Weight of peanuts from two different locations can serve as an example of two independent samples. On each location, a few dozens of the peanuts are selected at random and weighted individually.

On the contrary, the paired test focuses on comparison of two related datasets, for instance on two sets of measurements, taken on the same units, under different circumstances. Measurements of each unit come in x, y pairs. The paired test can be performed to decide whether the different conditions influence measurements on the same unit. Technically, the paired comparison goes through the test of whether the expected value of the *difference* between first and second variable, E(x - y) is significantly different from zero. For example, consider comparison of blood cholesterol levels for a group of patients, measured before and after a particular medical treatment. There have to be the same number of pre- and post-treatment measurements (patients who might dropped from the study during the treatment are omitted). Relative ordering of the pre- and post-treatment measurements is important: both measurements of the same patient have to appear on the same line.

Data and parameters

Compare two samples	×		
Task name : Comparison			
1. sample Sample A	Data		
2. sample Sample B	 All 		
Significance level 0.05 C Marked			
Type of comparison O Paired O Unmarked			
🥐 Help 🛛 🗶 Cancel	<u></u> К		

Fig. 1 Dialog panel Two-sample comparison

Names of the columns holding values of the first and second variable have to be entered in the dialog panel. In the *Comparison type* part, one has to specify whether the test for *Independent samples* or *Paired samples* is requested. Although the *Significance level* is set to the 0.05 (5%) by default, it can be edited. Similarly as with all other modules, analysis can be requested either for *All* data, or *Marked* data, or *Unmarked* data.

Independent samples

Data are in two columns, whose lengths can be different. Empty cells will be omitted.

Paired samples

Data are in two columns, whose lengths should be the same. If any of the two values in the same row is missing, whole row is omitted.

Protocol

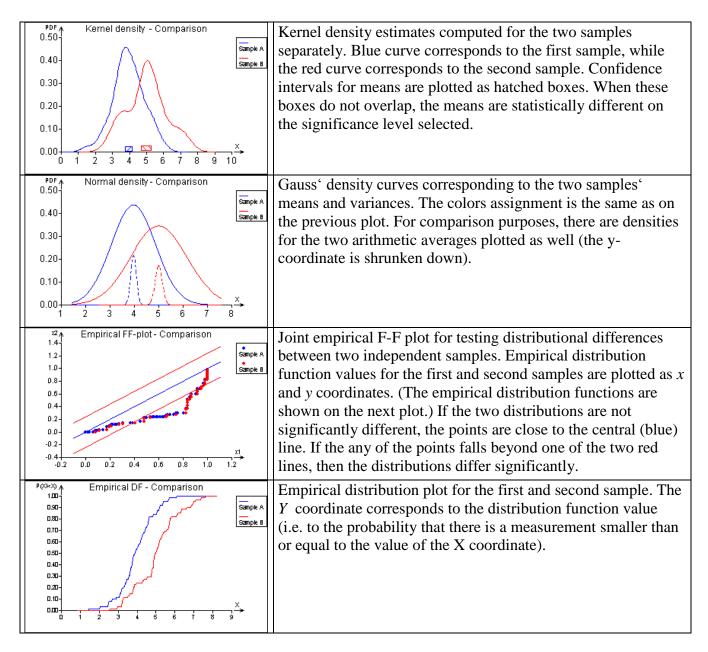
Protocol content is different when independent samples and when paired samples were tested. The same is true for graphical outputs. Both output versions are described below.

Independent san	nples		
Task name	Project name taken from the dialog panel.		
Significance	Required significance level α .		
level			
Columns to	Names of the columns containing samples to compare.		
compare			
1	The sample size of first dataset (n_1) and second dataset (n_2) .		
	Arithmetic averages of the first and second column, x_1 , x_2 .		
	Standard deviations of the first and second sample, s_1 a s_2 .		
deviation			
Variance	Variance of the first and second sample, s_1^2 and s_2^2 .		
Correl coeff	This entry, together with the warning "Significant correlation!" will appear only in		
	the case that correlation between the two columns is significant (significantly		
К(Л,У)	different from zero) at the significance level α . In such a case, there might be a		
	serious problem with the data and/or their collection procedures, or paired		
	comparison might be called for. If this row is not included in the Protocol, correlation		
	coefficient is not significantly different from zero.		
Variance	Also called Variance homogeneity test. Tests whether the two sample variances are		
equivalence test	different. The test is based on approximate normality. Specifically, the data should		
	not contain any outliers. If that is not the case, robust variance estimates should be		
	used instead (see below).		
Variance ratio	Test statistic, $\max(\sigma_1^2 / \sigma_2^2, \sigma_2^2 / \sigma_1^2)$		
Degrees of	Degrees of freedom that are used to look up the critical value, i.e. the value of the		
	quantile of the <i>F</i> -distribution with n_1 -1 and n_2 -1 degrees of freedom		
	<i>F</i> -distribution quantile, $F(\alpha, n_1-1, n_2-1)$		
Conclusion	Variance homogeneity test conclusion in words: "Variances are not different", or		
	"Variances are different".		
p-value	<i>p</i> -value corresponds to the smallest significance level on which the null hypothesis		
	about variance homogeneity were rejected for the given data.		
Robust	Alternative variance homogeneity test for two samples. It is intended for non-normal		
	data, mainly those coming from distributions differing from the normal distribution		
vuriance test	by skewness. The test should not be used for normal data (due to a lower power).		
Variance ratio	Test statistic, $\max(\sigma_1^{2}/\sigma_2^{2}, \sigma_2^{2}/\sigma_1^{2})$.		
Corrected	Degrees of freedom corrected for the departure from normality.		
degrees of			
freedom			
	<i>F</i> -distribution quantile.		
	Variance homogeneity test conclusion in words: "Variances are not different", or		
	"Variances are different".		
p-value	<i>p</i> -value corresponds to the smallest significance level on which the null hypothesis		
	about variance homogeneity were rejected for the given data.		

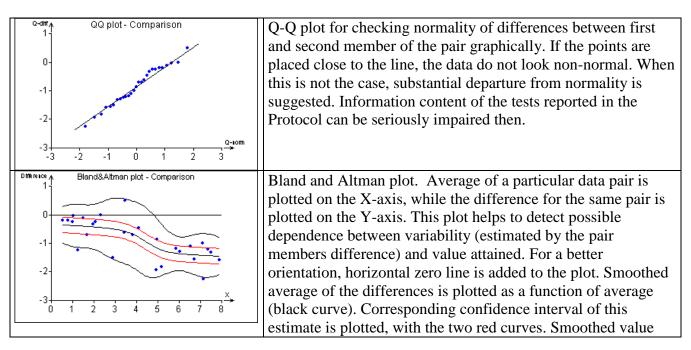
variances t-statistic Degrees of freedom Critical value Conclusion	Test of the null hypothesis of equal means in the case of equal variances. When the variances are significantly different, <i>unequal</i> variances version of the test needs to be used, see below. Test statistic. Degrees of freedom for the t-test. t-distribution quantile. Test conclusion in words. <i>p</i> -value corresponds to the smallest significance level on which the null hypothesis about equal means would be rejected for given data.	
Mean		
equivalence test		
	Test of the null hypothesis of equal means in the case of unequal variances. When the	
variances	s variances are not significantly different, <i>equal</i> variances version of the test needs to	
t-statistic	be used, see above. Test statistic.	
	t-test degrees of freedom.	
freedom		
Critical value	t-distribution quantile.	
	Test conclusion in words.	
p-value	<i>p</i> -value corresponds to the smallest significance level on which the null hypothesis	
	about equal means is rejected for given data.	
Goodness of fit		
test		
-	Kolmogorov-Smirnov test, comparing distributions generating the two independent	
S test	samples. It is based on maximum difference between empirical distribution functions	
	(computed from the two samples). Note that it is possible that both means and	
	variances are not significantly different, while the KS test shows significant difference between the distributions. Typically, this is connected to a substantial	
	difference of at least one of the distributions from normality (usually asymmetry or	
	bimodality). Data are not suitable for the simple t-test, then.	
Difference DF	Maximal empirical distribution functions difference. It is the test statistic for the KS	
	test.	
Critical value	KS-distribution critical value.	
Conclusion	Test conclusion in words: "Distributions are significantly different" or "Distributions	
	are not significantly different"	

Paired samples

1 an ea samples		
Task name	Project name taken from the dialog panel.	
Significance	Required significance level α .	
level		
Columns to	Names of the columns containing samples to compare.	
compare		
Analysis of		


differences			
Sample size	Number of data pairs, <i>n</i> .		
	Arithmetic mean of the difference between the first and second variable x_1-x_2 (first		
difference	of a pair – second of a pair), x_d		
Confidence	$(1-\alpha)$ % confidence interval for arithmetic mean of differences.		
interval			
Standard	Standard deviation of the differences, s_d .		
deviation			
Variance	Variance of the differences, s_d^2 .		
Correlation	Sample correlation coefficient r. It estimates correlation between the first and second		
coefficient	data column. When the correlation is not significant, red warning will appear. Paired		
R(x,y)	comparison choice is somewhat suspicious. There might be some problem with the		
	dataset. For instance, relative ordering of the first and second columns might be		
	distorted. Or, the x_1 , x_2 pairs come from a box that is too narrow/low.		
Test of difference	The test of difference between the first and second pair members.		
	Test statistic, $x_d \cdot \sqrt{n} / s_d$.		
Degrees of	Number of degrees of freedom, $n-1$.		
freedom			
Critical value			
Conclusion	Test conclusion in words. The differences are either "NOT SIGNIFICANTLY		
	different from zero", or "SIGNIFICANTLY different from zero".		
p-value	<i>p</i> -value corresponds to the smallest significance level on which the null hypothesis		
	about mean difference being equal to zero is rejected for given data.		

Graphs


Graphical output is different, according to whether paired or independent samples comparison was choice was selected (similar to the Protocol differences).

Independent samples

Q-sample A 9 8 7 6 5 4 4 - 3 - 2 - 2 - 2 - 2 - 2 - - - - - - - - - - - - -	Q-Q plot for all data. All data are plotted as one sample. First or second sample data are plotted in different colors (see the legend). The two sample means are marked and their confidence intervals are plotted as hatched boxes. Plotted lines' slopes correspond to standard deviations of the two samples. Hence, the steeper line corresponds to sample with a larger standard deviation.
Sample & Boxplot - Comparison	Boxplots help to compare the samples visually. Larger box contains inner 50% of the data. Right border of the green box corresponds to the 75th percentile. The left border of the green box corresponds to the 25th percentile. Center of the white band corresponds to the median. White band corresponds to the confidence interval for median. Two black whiskers correspond to the so-called inner fences. All data beyond the inner fences are plotted individually, as red points. They are suspicious and can be considered as outliers. Asymmetric placement of the white band in the green box shows data distribution asymmetry.

Paired samples

PDF ∧ Normal density - Comparison	$\pm 2\sigma$, where σ is estimated nonparametrically and it is plotted as two black curves. Ideally, (when the difference is uniformly zero for any value of average), the red curves should contain horizontal zero line, and the $\pm 2\sigma$ band should be approximately linear, parallel to the horizontal zero line. Gaussian density curve. The parameters are estimated from the
0.60- 0.50- 0.40- 0.30- 0.20- 0.10- 0.00 -3 -2 -1 0 1	differences between pair members under the normality assumption. The inner curve corresponds to the approximate density of the arithmetic mean of the difference (<i>Y</i> coordinate is shrunken for better readability). Vertical red line corresponds to zero difference. The hatched box corresponds to the mean difference confidence interval. If zero is contained in the interval, then the mean difference between first and second sample is not significantly different from zero.
V Scatter plot - Comparison 9- 8- 7- 6- 5- 10- 10- 10- 10- 10- 10- 10- 10	This plot is useful when judging degree of interdependence between the first and second sample. $y=x$ line is plotted in red (dashed). It corresponds to the zero difference. The second line corresponds to the best y-depends-on-x line, fitted to the data.
Confidence ellipse - Comparison 12- 10- 8- 6- 4- 2- 0- -2- -4- -2- 0- 2- -4- -2- 0- 2- -4- -2- 0- 2- -4- -2- 0- 2- -4- -2- 0- 2- -4- -2- 0- 2- -4- -2- 0- 2- -4- -2- -2- -2- -2- -2- -2-	The same points as on the previous plot are plotted here. The data points here are viewed as a sample from a bivariate normal distribution, however. Black ellipse corresponds to the region containing approximately $100.(1-\alpha)\%$ of the data (under bivariate normality). The red ellipse corresponds to the border of the $100.(1-\alpha)\%$ confidence region for the vector of two means.