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Module PLS regression provides the user with one of the best computational tools for 

evaluating a pair of multidimensional variables, which is expected to have linear relationship inside 

one or the other multidimensional variable, and linear relationship between the two variables with each 

other. This computationally intensive methodology allows to explain and predict one of the variables 

using other group of variables. The PLS regression method found a large number of applications in the 

planning and management of quality in manufacturing technology, design and optimization of the 

characteristics of products in the development of new products, marketing studies, research in the 

evaluation of experiments, in clinical trials. An example might be modeling the relationship between 

technological parameters in the production and product quality parameters, or between the chemical 

composition and physical and biological characteristics. The typical questions of technological 

practice, which PLS can often answer include: 

 

It has a purity of the raw material any effect on the strength of the product? 

What happens if the temperature is increased in the process? 

Can we increase the stability of the product by reducing the speed or rotation? 

Which process parameters affect the most product strength? 

How to set the value of procedural parameters to achieve the desired product characteristics? 

What caused the decrease in the parameter? 

In what and how subsequent production batches differ? 

How to improve the stability / quality? 

How to increase the strength / value / competitiveness? 

Which input parameters are crucial for the quality? 

Which process parameters are crucial for the quality? 

 

Mathematical basics of the PLS regression method 

Let us denote X(nxp) the matrix (table) of measured values of p variables (columns) with n 

lines and denote Y(nxq) the corresponding table with the same number of lines n but with q variables. 

Center all columns (subtract column average from each column).To extract maximum information 

from the p- q- dimensional matrices to a lower dimension space, we decompose X and Y to the 

product of the orthogonal matrices T(nxk) and U(nxk), with coefficient matrices P and Q 

 

X = TP
T
 + E 

Y = UQ
T
 + F 

 

while maximizing the correlation between T and U. Required dimension k, 1 < k  min (p, q)  is 

chosen by user, for example, on the basis of the squares sum decrease (scree plot), see below. Noise 

and irrelevant information contained „litter“ in every measured data is swept into residual matrices E 

and F. Decomposition U = TB (where B is a square diagonal matrix) give us a tool for computing 

(estimating) Y from X but also X from Y, just by switching the X and Y data because the model PLS-

R is symmetric. 

 

Ŷ = TBQ
T
, 

 

T is calculated from the new data X, T = XP
 
‾ (P

 
‾ indicate generalized Moore-Penrose 

pseudoinversion of a rectangular matrix P). Furthermore, there is an internal link between X and Y. By 

writing W = BQ
T
, we can rewrite the original pair of relations in the form 

 

X = TP
T
 + E 

Y = TW + F 

 



so that the data X and Y are linked through a common scores matrix T, which is actually 

orthogonalized original matrix X in generally smaller number of dimensions, with a maximum 

extracted information contained in the original X, with removed noise (which is moved to the matrix 

E), while the maximum covariance with the matrix Y is ensured. Using the relation 

 

A = P‾ B Q
T
 

 

we can reconstruct coefficients of a classical regression model with multivariate response Y = AX. 

Columns ai of A contain linear coefficients (absolute terms are zero thanks to centering data) of the 

models yi = Xai, where yi is i-th column of matrix Y. The coefficients are not usually fully numerically 

identical to coefficients obtained by classical linear regression. They are generally biased, but 

shrinked, which means that they have lower variances, and are generally more stable. 

 

As mentioned above, this method is looking for a relationship between the two phenomena 

described by multidimensional numerical vectors. A typical example is X matrix containing measured 

technological parameters in the production of individual units or batches and matrix Y containing the 

relevant physical parameters of finished products, their deviations from the specifications, etc. Another 

example is a matrix X containing climate and chemical descriptions of the various sites and Y matrix 

with biological parameters of micro-organisms, vegetation and fauna in these locations. There are 

many other applications in geology, biology, toxicology, chemistry, medicine, psychiatry, behavioral 

sciences, pharmacology, cosmetics, food, steel industry to name just a few. With PLS prediction we 

can then obtain estimates of unknown quantities Y on the basis of known values X. 

 

Model validation 

The prediction quality of a particular PLS model can be assessed on the basis of its ability to 

predict the value of y from the value of x. This is used in various validation procedures, sometimes 

called cross-validation. The principle of validation of the model is the same as in the case of neural 

networks. We „hide“ part of the data before computation of the PLS model. This hidden data are called 

test or validation data. For the rest of the data, called training data, we calculate parameters of the PLS 

model. Then the validation are „unhidden“ and used to and check whether the model correctly predicts 

validation data. Validation must have the same nature and range of values x, and therefore the same 

model as the data used for training. For the validation data we then construct diagnostic charts, which 

simply conclude whether the model is appropriate for all data. If the model describes well only the 

training data and not validation data, this usually means that we have little data (rows), or that we have 

chosen is too large proportion of validation data. A proportion between 10 and 40% of the validation 

data is usual. 

 

Of course, even advanced PLS regression method is not miraculous and has certain restrictions, 

which is mainly assumption of linearity of all relationships and normality of error distribution. Along 

with the ability of prediction and graphical diagnostics, however, it provides a very powerful tool for 

analysis and prediction of multidimensional variables. In quality control, thanks to its prediction 

capability, PLS regression is an ideal tool for the quality planning, design of products, optimization of 

technologies and applied research. 

 

Data and parameters 

Module PLS regression needs two data tables, matrix X with p columns and Y with q columns 

selected as the dialog box items Matrix X and Matrix Y, see Fig. 1. The matrix columns must contain 

numeric data only, the number of rows must be the same for both X and Y. Each matrix must contain 

at least two columns. Columns of matrix X must not appear in the matrix Y. The limiting dimension k 

can be set by user. If the box Dimension is not checked, the maximum dimension is set to k = min(p, 

q). It is recommended to perform PLS in maximal dimension first, then optionally we can determine an 

appropriate value of k using the scree plot (see paragraph Graphical output below) and repeat the 



computation again with new k. If the checkbox Connect Biplot is checked, consecutive points of the 

Biplot will be connected in the order of data in spreadsheet. This can help to follow a possible 

trajectory of the process. If the checkbox X-Prediction is checked, it is necessary to choose the same 

number of columns as in the field Independent variable X. These variables will be used to compute the 

predicted values of the dependent variable. The X for the prediction must have the same number of 

columns as the independent variable matrix X, but may have a different number of lines (at least 2 

lines). A typical example of input matrices and data for prediction is given on Fig. 2. 

 

 

Fig. 1 Dialog box for PLS regression 

 

 
X (n x p) 

 
Y (n x q) 

 
X for prediction (n1 x p) 

 

Fig. 2 Typical data for PLS regression 

Protocol 

Input data  

No of rows Number of valid rows 

  

No of columns Number of columns of X a Y matrices. 

Columns Column names of both input matrices. 

  

Chosen dimension Dimension k for the PLS model chosen in the input dialog window. The 

dimension must be less or equal to min(p, q). Scree plot may be used as an 



aid to select suitable k if required. 

  

PLS - coefficients, B Diagonal elements of the matrix B. 

  

Explained sum of 

squares 

Table of the squares sum of residuals with growing dimension of the model, 

i = 1, … k, these values are used for constructing scree plot. 

No of components Number of components (dimensions) used for the squares sum. 

 

RSS Residual square sum value, for 0 components the RSS is the total squares 

sum without a model. 

Percent % of the RSS 

Explained % (100 – %RSS). 

Loadings X, P Loadings matrix P. 

Loadings Y, Q Loadings matrix Q. 

Regression 

coefficients, A 

Matrix of regression coefficients aij formally similar to those in the separate 

classical multiple linear regression models Y = XA, or yj = Σaijxi. The 

coefficient values are generally different from the classical coefficients, 

since they are based on the orthogonal component regression and therefore 

they are biased, shortened (with lower standard deviations) and more stable. 

Prediction Predicted values for the data selected in the field X-Prediction in the PLS 

dialog box. This part of output is not generated unless the checkbox is 

checked. 

 

Graphs 

Joined Biplot 

 
Separate Biplots 

 
 

 

Bi-plot for the matrices X and Y in one plot, matrix X and Y 

separately. Biplot is a projection of multidimensional data in 

the plane (the best one in terms of least squares). Points 

represent rows, rays correspond to columns of the original data. 

To identify the data rows you can use the labels of points 

selected in the dialog. Close vector lines (rays) are likely to be 

mutually correlated. Points located in the direction of a ray will 

have bigger value of the respective variable. You should be 

aware that, due to the drastic reduction in the number of 

dimensions, particularly for larger p,q this information and 

guidance is rather a global assessment of the structure and 

possible links and relationships in the data. If the checkbox 

Connect Biplot was checked, the points in the plot are linked in 

chronological order, which sometimes makes it possible to 

identify and spot trends in the time-series or non-stationary 

process, as shown on the illustration below. 

 

 
Connected biplot makes it possible to spot „wandering“ of the 



 

 

 

process in time. 

X-Y Components agreement plot 

 
 

Plot  of agreement between the columns of T and U. This graph 

shows the global success of a PLS model fitting. The closer the 

points to the line, the more successful a PLS model is. 

Scree plot 

 
 

The effectiveness of the model expressed by reduction of 

unexplained (residual) sum of squares, depending on the 

number of factors included (columns of matrix T and U). 

Y-Prediction plot 

 

 
 

 

 

 

This plot expresses compliance of dependent variables and 

model prediction. The closer are the points to the line, the 

better the fit. This plot is created for each dependent variable. 

Some variables can be predicted better, others worse. If the plot 

does not show a visible trend, the suitable model for this 

variable was probably not found, a model is not able to predict 

dependent variable. If Validation checkbox was selected, the 

validation (test) points in the plot are marked in red (in the 

example below marked empty circles). In the Fig A below both 

the training and the validation data are fitted well, showing the 

model is reliable and the dependence is real. However, if the 

validation data strongly disagree with other data, as in the Fig 

B below, the PLS model may be over fitted, describing only the 

training data, and probably is not usable for the prediction of 

new values. It is advisable to try to reduce the dimension of the 

model by entering numbers less than min(p, q) into the field 

dimension. 

  
Good prediction Poor prediction 

Validation residuals plot Plot Validation is used to assess the quality of prediction of 

validation data. Unique very remote points may represent 

outlying measurements. On the Y-axis are Euclidean distances 

of the data from the model. 



 
 

 


